

arxiv: 1404.1256, 1405.3813, 1405.3963

Statistical Power Law due to Reservoir Fluctuations

and the Universal Thermostat Independence Principle

T.S. Biró P. Ván G.G. Barnaföldi K. Ürmössy

Heavy Ion Research Group

MTA WIGNER Research Centre for Physics, Budapest

July 13, 2014

Talk given by T. S. Biró at Σ Φ 2014, Rhodos, Greece, 2014.07.07.

Finite Reservoirs

Avogadro number (atoms in classical matter) ~ 6 · 10²³
Neurons in human brain ~ 10¹¹
New particles from heavy ion collisons ~ 600 - 6000
From elementary high energy collisions (pp) ~ 6 - 60

General expectation:

smaller size \rightarrow larger *relative* fluctuations.

イロン イボン イヨン イヨン

Outline

・ロシ ・ 同 シ ・ ヨ シ ・ ヨ シ

- What is the physics behind q?
- If S leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

2 LHC spectra vs multiplicity

ner

What is the physics behind q? If S leads to $q \neq 1$, what K(S) achieves $q_K =$

Ideal Gas: microcanonical statistical weight

The one-particle energy, ω , out of total energy, *E*, is distributed in a one-dimensional relativistic jet according to a statistical weight factor which depends on the number of particles in the reservoir, *n*:

$$P_{1}(\omega) = \frac{\Omega_{1}(\omega) \Omega_{n}(E - \omega)}{\Omega_{n+1}(E)} = \rho(\omega) \cdot \frac{(E - \omega)^{n}}{E^{n}}$$
(1)

Superstatistics: *n* itself has a distribution (based on the physical model of the reservoir and on the event by event detection of the spectra).

< ロ > < 同 > < 三 > < 三 > :

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$

Ideal Reservoir: (Negative) binomial *n*-distribution

n particles among *k* cells: bosons $\binom{n+k}{n}$ fermions $\binom{k}{n}$ A subspace (n, k) out of (N, K)Limit: $K \to \infty$, $N \to \infty$; average occupancy f = N/K is fixed.

$$B_{n,k}(f) := \lim_{K \to \infty} \frac{\binom{n+k}{n} \binom{N-n+K-k}{N-n}}{\binom{N+K+1}{N}} = \binom{n+k}{n} f^n (1+f)^{-n-k-1}.$$
(2)

$$F_{n,k}(f) := \lim_{K \to \infty} \frac{\binom{k}{n}\binom{K-k}{N-n}}{\binom{K}{N}} = \binom{k}{n} f^n (1-f)^{k-n}.$$
 (3)

イロト イポト イヨト イヨト

GNEF

What is the physics behind q? If S leads to $q \neq 1$, what K(S) achieves $q_K = 1$

Bosonic reservoir

Reservoir in hep: E is fixed, n fluctuates, e.g. according to NBD.

$$\sum_{n=0}^{\infty} \left(1 - \frac{\omega}{E}\right)^n B_{n,k}(f) = \left(1 + f\frac{\omega}{E}\right)^{-k-1}$$
(4)

Note that $\langle n \rangle = (k + 1)f$ for NBD. Then with $T = E / \langle n \rangle$ and $q - 1 = \frac{1}{k+1}$ we get

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}}$$

This is **exactly** a q > 1 Tsallis-Pareto distribution.

イロン 不得入 不良人 不良人 一度

Gner

What is the physics behind q? If S leads to $q \neq 1$, what K(S) achieves $q_K = 13$

Fermionic reservoir

E is fixed, *n* is distributed according to BD:

$$\sum_{n=0}^{\infty} \left(1 - \frac{\omega}{E}\right)^n F_{n,k}(f) = \left(1 - f\frac{\omega}{E}\right)^k$$
(5)

Note that $\langle n \rangle = kf$ for BD. Then with $T = E / \langle n \rangle$ and $q - 1 = -\frac{1}{k}$ we get

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}}$$

This is **exactly** a q < 1 Tsallis-Pareto distribution.

イロト イポト イヨト イヨト

SNEF

What is the physics behind q ? If S leads to $q \neq 1$, what K(S) achieves $q_K = 1$

Boltzmann limit

In the $k \gg n$ limit (low occupancy in phase space)

$$\binom{n+k}{n}f^{n}(1+f)^{-n-k-1} \longrightarrow \frac{k^{n}}{n!}\left(\frac{f}{1+f}\right)^{n} \cdots$$
$$\binom{k}{n}f^{n}(1-f)^{k-n} \longrightarrow \frac{k^{n}}{n!}\left(\frac{f}{1-f}\right)^{n} \cdots$$
(6)

After normalization this is the **Poisson** distribution:

$$\Pi_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle} \quad \text{with} \quad \langle n \rangle = k \frac{f}{1 \pm f}$$
(7)

The result is **exactly** the Boltzmann-Gibbs weight factor:

$$\sum_{n=0}^{\infty} \left(1 - \frac{\omega}{E}\right)^n \Pi_n(\langle n \rangle) = e^{-\omega/T}.$$
 (8)

・ロト ・ 同ト ・ ヨト ・ ヨト

ner

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = j$

Experimental NBD distributions PHENIX PRC 78 (2008) 044902

Au + Au collisons at \sqrt{s}_{NN} = 62 (left) and 200 GeV (right). Total charged multiplicities.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $k \approx 10-20 \quad \rightarrow \quad q \approx 1.05-1.10.$

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = \frac{1}{2}$

Summary of ideal reservoir fluctuations

In all the three above cases

$$T = \frac{E}{\langle n \rangle}$$
, and $q = \frac{\langle n(n-1) \rangle}{\langle n \rangle^2}$ (9)

イロン イボン イヨン イヨン

What is the physics behind q ? If S leads to $q \neq 1$, what K(S) achieves $q_K = 1$

Ideal gas with general *n*-fluctuations

Canonical approach: expansion for small $\omega \ll E$. Tsallis-Pareto distribution as an approximation:

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}} = 1-\frac{\omega}{T}+q\frac{\omega^2}{2T^2}-\dots$$
 (10)

Ideal reservoir phase space up to the subleading canonical limit:

$$\left\langle \left(1-\frac{\omega}{E}\right)^n\right\rangle = 1-\left\langle n\right\rangle \frac{\omega}{E} + \left\langle n(n-1)\right\rangle \frac{\omega^2}{2E^2} - \dots$$
 (11)

To subleading in $\omega \ll E$

$$\mathbf{T} = \frac{\mathbf{E}}{\langle \mathbf{n} \rangle}, \qquad \mathbf{q} = \frac{\langle \mathbf{n}(\mathbf{n}-\mathbf{1}) \rangle}{\langle \mathbf{n} \rangle^2} = \mathbf{1} - \frac{1}{\langle \mathbf{n} \rangle} + \frac{\Delta n^2}{\langle \mathbf{n} \rangle^2}. \quad (12)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

٦C

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$

wigner

General system with general reservoir fluctuations

Canonical approach: expansion for small $\omega \ll E$.

$$\left\langle \frac{\Omega_n(E-\omega)}{\Omega_n(E)} \right\rangle = \left\langle e^{S(E-\omega)-S(E)} \right\rangle = \left\langle e^{-\omega S'(E)+\omega^2 S''(E)/2-\dots} \right\rangle$$

$$= 1 - \omega \left\langle S'(E) \right\rangle + \frac{\omega^2}{2} \left\langle S'(E)^2 + S''(E) \right\rangle - \dots$$
(13)

Compare with expansion of Tsallis

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}} = 1-\frac{\omega}{T}+q\frac{\omega^2}{2T^2}-\dots$$
 (14)

Interpret the parameters

$$\frac{1}{T} = \langle S'(E) \rangle, \qquad q = 1 - \frac{1}{C} + \frac{\Delta T^2}{T^2}$$
(15)

 $\langle S''(E) \rangle = -1/CT^2$

expressed via the heat capacity of the reservoir, 1/C = dT/dE

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K =$

Understanding the parameter q

in terms fluctuations

イロト イポト イヨト イヨト

Opposite sign contributions from $\langle S'^2 \rangle - \langle S' \rangle^2$ and from $\langle S'' \rangle$. In all cases approximately

$$q=1-rac{1}{C}+rac{\Delta T^2}{T^2}.$$

- q > 1 and q < 1 are both possible
- for any relative variance $\Delta T/T = 1/\sqrt{C}$ it is exactly q = 1
- for $nT = E/\dim = \text{const}$ it is $\Delta T/\langle T \rangle = \Delta n/\langle n \rangle$.
- for ideal gas and n distributed as NBD or BD, the Tsallis form is exact

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

K(S) additive S non-additive

Use K(S) instead of S to gain more flexibility for handling the subleading term in ω !

$$\left\langle e^{K(S(E-\omega))-K(S(E))} \right\rangle = 1 - \omega \left\langle \frac{d}{dE} K(S(E)) \right\rangle$$
$$+ \frac{\omega^2}{2} \left\langle \frac{d^2}{dE^2} K(S(E)) + \left(\frac{d}{dE} K(S(E)) \right)^2 \right\rangle + \dots$$
(16)

Note that

$$\frac{d}{dE}K(S(E)) = K'S', \qquad \frac{d^2}{dE^2}K(S(E)) = K''S'^2 + K'S'' \quad (17)$$

Compare this with the Tsallis power-law!

イロト イポト イヨト イヨト

ner

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

Tsallis parameters for K(S) entropy

Using previous average notations and assuming that K(S) is independent of the reservoir fluctuations (*universality*):

$$\frac{1}{T_{K}} = K' \frac{1}{T},$$

$$\frac{q_{K}}{T_{K}^{2}} = \left(K'' + K'^{2}\right) \frac{1}{T^{2}} \left(1 + \frac{\Delta T^{2}}{T^{2}}\right) - K' \frac{1}{CT^{2}}.$$
 (18)

By choosing a particular K(S) we can manipulate q_k .

イロト イポト イヨト イヨト

ner

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

q_{K} parameter for K(S) entropy

Introduce $F = 1/K' = T_K/T$ and $\Delta T^2/T^2 = \lambda/C$.

Then

$$q_{\mathcal{K}} = \left(1 + \frac{\lambda}{C}\right) \left(1 - F'\right) - \frac{1}{C}F \qquad (19)$$

delivers the simple diff.eq.

$$(\lambda + C)F' + F = \lambda + C(1 - q_K) = 1 + C(q - q_k).$$
 (20)

With F(0) = 1 the only solution for $q_K = q$ is F = 1, K(S) = S.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

wigner

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

Purposeful deformation achieves $q_K = 1$

Demanding $q_{K} = 1$ (K-additivity), Eq.(20) becomes easily solvable with F(0) = 1/K'(0) = 1.

Additivity Restoration Condition - ARC

$(\lambda + C) F' + F = \lambda$ (21)

イロト イポト イヨト イヨト

wigner

(:)

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

UTI principle

Best handling of subleading terms:

Not considering reservoir fluctuations: $\Delta T/T = 0$. Applying our previous general result for $\lambda = 0$ we obtain

$$F' + \frac{1}{C}F = 0.$$
 (22)

By this, one arrives at the original Universal Thermostat Independence (UTI) diff. equation:

$$\frac{K''}{K'} = \frac{1}{C}.$$
(23)

< ロ > < 同 > < 三 > < 三 > :

SACL

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

Deformed entropy formula

T.S.Biró, P.Ván, G.G.Barnaföldi, EPJA 49: 110, 2013

イロン 不得入 不良人 不良人 一度

For ideal gas *C* is constant, without reservoir fluctuations q = 1 - 1/C and C = 1/(1 - q).

The solution of eq.(23) with K(0) = 0, K'(0) = 1 delivers

$$K(S) = C\left(e^{S/C} - 1\right) \tag{24}$$

and one arrives upon using $K(S) = \sum_{i} p_i K(-\ln p_i)$ at the statistical entropy formulas of Tsallis and Rényi:

$$K(S) = \frac{1}{1-q} \sum_{i} (p_{i}^{q} - p_{i}), \qquad S = \frac{1}{1-q} \ln \sum_{i} p_{i}^{q}$$
 (25)

iner

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

Deformed formula with C and λ constant

Demanding $q_{K} = 1$, due to F = 1/K' one obtains in general the diff.eq.

$$\lambda \mathcal{K}^{\prime 2} - \mathcal{K}^{\prime} + (\mathcal{C} + \lambda) \mathcal{K}^{\prime\prime} = 0.$$
⁽²⁶⁾

First integral (with constant λ and $C_{\Delta} = \lambda + C$)

$$K'(S) = \frac{1}{(1-\lambda)e^{-S/C_{\Delta}} + \lambda}$$
(27)

Second integral of the DE

$$K(S) = \frac{C_{\Delta}}{\lambda} \ln\left(1 - \lambda + \lambda e^{S/C_{\Delta}}\right).$$
(28)

 \odot

・ロン ・同 とくほう ・ ほう 一 臣

Migner

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

K(S)-additive composition rule

With the result (28) the K(S)-additive composition rule, $K(S_{12}) = K(S_1) + K(S_2)$, is equivalent to

$$h(S_{12}) = h(S_1) + h(S_2) + \frac{\lambda}{C_{\Lambda}}h(S_1)h(S_2)$$
 (29)

with

$$h(S) = C_{\Delta} \left(e^{S/C_{\Delta}} - 1 \right).$$
(30)

イロト イポト イヨト イヨト

This is a combination of the ideal gas entropy-deformation, h(S) and an Abe – Tsallis composition law with $q - 1 = \lambda/C_{\Delta}$.

חפר

What is the physics behind q? If S leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

Non-extensive limit?

Using the auxiliary $h_C(S) = C(e^{S/C} - 1)$ function,

our result is

$$\mathbf{K}_{\lambda}(\mathbf{S}) = \mathbf{h}_{\mathbf{C}_{\Delta}/\lambda}^{-1}\left(\mathbf{h}_{\mathbf{C}_{\Delta}}(\mathbf{S})
ight).$$

For $\lambda = 1$ it is obviously $K_1(S) = S$. For $\lambda = 0$ we get $K_0(S) = h_C(S)$.

A particular limit: $C \to \infty, \lambda \to \infty$ but $\lambda/C_{\Delta} \to \tilde{q} - 1$ finite:

$$K_{NE}(S) = h_{1/(\tilde{q}-1)}^{-1}(S) = \frac{1}{\tilde{q}-1} \ln(1+(\tilde{q}-1)S).$$
 (31)

K-additivity: $S_{12} = S_1 + S_2 + (\tilde{q} - 1)S_1S_2$

= 990

.

イロト イポト イヨト イヨト

<u>Úigner</u>

 \odot

What is the physics behind q? If *S* leads to $q \neq 1$, what K(S) achieves $q_K = 1$?

Generalized Tsallis formula

based on $K(S) = \sum_{i} p_i K(-\ln p_i)$

$$\mathcal{K}_{\lambda}(S) = \frac{C_{\Delta}}{\lambda} \sum_{i} p_{i} \ln\left(1 - \lambda + \lambda p_{i}^{-1/C_{\Delta}}\right).$$
(32)

Normal fluctuations: $K_1(S) = -\sum_i p_i \ln p_i$ is exactly the Boltzmann entropy!

No fluctuations: $\mathcal{K}_0(S) = C \sum_i \left(p_i^{1-1/C} - p_i \right)$ is Tsallis entropy with q = 1 - 1/C. Extreme large fluctuations and arbitrary C(S):

$$K_{\infty}(S) = \ln(1+S) = \sum_{i} p_{i} \ln(1-\ln p_{i}).$$
 (33)

The canonical p_i distribution is Lambert W, it shows tails like the Gompertz distribution

<ロ> (四) (四) (三) (三) (三) (三)

IGNEr

2 LHC spectra vs multiplicity

イロン イボン イヨン イヨン

Statistical vs QCD power-law

The experimental fact for hadrons is NBD!

- QCD power-law: constant power (k + 1) > 4 (conformal limit)
- statistical power: $(k + 1) = \langle n \rangle / f \propto$ reservoir size
- data fits: ALICE LHC k + 1 powers vs N_{part}
- soft and hard power-laws differ for large N_{part}

イロト イポト イヨト イヨト

Soft and Hard Tsallis fits:

ALICE PLB 720 (2013) 52

BVBU

Trends with N_{part}

Figure : C = k + 1 powers of the power law and fitted *T* parameters.

э.

・ロト ・ ア・ ・ ヨト ・ ヨト

Summary

- Ideal gas reservoirs with NBD or BD number fluctuations lead to exact Tsallis distributions: $q = 1 + \frac{1}{k+1}$ and $q = 1 \frac{1}{k}$.
- Tsallis distribution is the approximate canonical weight with fluctuating reservoirs: $q = 1 1/C + \Delta T^2/T^2$.
- A general method (UTI) is presented to derive optimally additive entropy: K(S) for $q_K = 1$.
- New entropy formula; for infinite temperature fluctuations at finite heat capacity it is *parameter – free.*

$$K(S) = \sum_i p_i \ln (1 - \ln p_i).$$

GNE