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Finite Heat Bath and Fluctuation Effects
LHC spectra vs multiplicity

Summary

Finite Reservoirs

Avogadro number (atoms in classical matter) ∼ 6 · 1023

Neurons in human brain ∼ 1011

New particles from heavy ion collisons ∼ 600− 6000

From elementary high energy collisions (pp) ∼ 6− 60

General expectation:
smaller size→ larger relative fluctuations.
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Ideal Gas: microcanonical statistical weight

The one-particle energy, ω, out of total energy, E , is distributed
in a one-dimensional relativistic jet according to a statistical
weight factor which depends on the number of particles in the
reservoir, n:

P1(ω) =
Ω1(ω) Ωn(E − ω)

Ωn+1(E)
= ρ(ω) · (E − ω)n

En (1)

Superstatistics: n itself has a distribution (based on the physical
model of the reservoir and on the event by event detection of the
spectra).
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Ideal Reservoir: (Negative) binomial n-distribution

n particles among k cells: bosons
(n+k

n

)
fermions

(k
n

)
A subspace (n, k) out of (N,K )

Limit: K →∞ , N →∞; average occupancy f = N/K is fixed.

Bn,k (f ) := lim
K→∞

(n+k
n

)(N−n+K−k
N−n

)(N+K +1
N

) =

(
n + k

n

)
f n (1 + f )−n−k−1.

(2)

Fn,k (f ) := lim
K→∞

(k
n

)(K−k
N−n

)(K
N

) =

(
k
n

)
f n (1− f )k−n. (3)
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Bosonic reservoir

Reservoir in hep: E is fixed, n fluctuates, e.g. according to NBD.

∞∑
n=0

(
1− ω

E

)n
Bn,k (f ) =

(
1 + f

ω

E

)−k−1
(4)

Note that 〈n 〉 = (k + 1)f for NBD. Then with T = E/ 〈n 〉 and
q − 1 = 1

k+1 we get (
1 + (q − 1)

ω

T

)− 1
q−1

This is exactly a q > 1 Tsallis-Pareto distribution.
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Fermionic reservoir

E is fixed, n is distributed according to BD:

∞∑
n=0

(
1− ω

E

)n
Fn,k (f ) =

(
1− f

ω

E

)k
(5)

Note that 〈n 〉 = kf for BD. Then with T = E/ 〈n 〉 and
q − 1 = − 1

k we get (
1 + (q − 1)

ω

T

)− 1
q−1

This is exactly a q < 1 Tsallis-Pareto distribution.
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Boltzmann limit
In the k � n limit (low occupancy in phase space)

(n + k

n

)
f n(1 + f )−n−k−1 −→

kn

n!

( f

1 + f

)n
. . .

(k

n

)
f n(1− f )k−n −→

kn

n!

( f

1− f

)n
. . . (6)

After normalization this is the Poisson distribution:

Πn =
〈n 〉n

n!
e−〈 n 〉 with 〈n 〉 = k

f
1± f

(7)

The result is exactly the Boltzmann-Gibbs weight factor:

∞∑
n=0

(
1− ω

E

)n
Πn(〈n 〉) = e−ω/T . (8)
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Experimental NBD distributions PHENIX PRC 78 (2008) 044902

Au + Au collisons at
√

sNN = 62 (left) and 200 GeV (right). Total
charged multiplicities.

k ≈ 10− 20 → q ≈ 1.05− 1.10.
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Summary of ideal reservoir fluctuations

In all the three above cases

T =
E
〈n 〉

, and q =
〈n(n − 1) 〉
〈n 〉2

(9)
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Ideal gas with general n-fluctuations

Canonical approach: expansion for small ω � E .
Tsallis-Pareto distribution as an approximation:(

1 + (q − 1)
ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2 − . . . (10)

Ideal reservoir phase space up to the subleading canonical limit:〈(
1− ω

E

)n
〉

= 1− 〈 n 〉 ω
E

+ 〈n(n − 1) 〉 ω
2

2E2 − . . . (11)

To subleading in ω � E

T =
E
〈n 〉

, q =
〈n(n− 1) 〉
〈n 〉2

= 1−
1
〈 n 〉

+
∆n2

〈 n 〉2
. (12)
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General system with general reservoir fluctuations
Canonical approach: expansion for small ω � E .〈

Ωn(E − ω)

Ωn(E)

〉
=
〈

eS(E−ω)−S(E)
〉

=
〈

e−ωS′(E)+ω2S′′(E)/2−...
〉

= 1− ω
〈

S′(E)
〉

+
ω2

2

〈
S′(E)2 + S′′(E)

〉
− . . . (13)

Compare with expansion of Tsallis(
1 + (q − 1)

ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2 − . . . (14)

Interpret the parameters

1
T

= 〈S′(E) 〉 , q = 1−
1
C

+
∆T 2

T 2
(15)

〈S′′(E) 〉 = −1/CT 2 expressed via the heat capacity of the reservoir,1/C=dT/dE
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Understanding the parameter q in terms fluctuations

Opposite sign contributions from
〈

S′ 2
〉
−〈S′ 〉2 and from 〈S′′ 〉.

In all cases approximately

q = 1−
1
C

+
∆T 2

T 2
.

q > 1 and q < 1 are both possible
for any relative variance ∆T/T = 1/

√
C it is exactly q = 1

for nT = E/dim = const it is ∆T/ 〈T 〉 = ∆n/ 〈n 〉.
for ideal gas and n distributed as NBD or BD, the Tsallis
form is exact
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K (S) additive S non-additive

Use K (S) instead of S to gain more flexibility for handling the
subleading term in ω!〈

eK (S(E−ω))−K (S(E))
〉

= 1− ω
〈

d
dE

K (S(E))

〉
+
ω2

2

〈
d2

dE2 K (S(E)) +

(
d

dE
K (S(E))

)2
〉

+ . . . (16)

Note that

d
dE

K (S(E)) = K ′S′,
d2

dE2 K (S(E)) = K ′′S′ 2 + K ′S′′ (17)

Compare this with the Tsallis power-law!
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Tsallis parameters for K (S) entropy

Using previous average notations and assuming that K (S) is
independent of the reservoir fluctuations (universality):

1
TK

= K ′
1
T
,

qK

T 2
K

=
(

K ′′ + K ′ 2
) 1

T 2

(
1 +

∆T 2

T 2

)
− K ′

1
CT 2 . (18)

By choosing a particular K (S) we can manipulate qk .
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qK parameter for K (S) entropy

Introduce F = 1/K ′ = TK/T and ∆T 2/T 2 = λ/C.

Then

qK =

(
1 +

λ

C

) (
1− F ′

)
− 1

C
F (19)

delivers the simple diff.eq.

(λ+ C)F ′ + F = λ+ C(1− qK ) = 1 + C(q − qk ). (20)

With F (0) = 1 the only solution for qK = q is F = 1,K (S) = S.
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Purposeful deformation achieves qK = 1

Demanding qK = 1 (K-additivity),
Eq.(20) becomes easily solvable with F (0) = 1/K ′(0) = 1.

Additivity Restoration Condition - ARC ,

(λ+ C) F ′ + F = λ (21)
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Best handling of subleading terms: UTI principle

Not considering reservoir fluctuations: ∆T/T = 0.

Applying our previous general result for λ = 0 we obtain

F ′ +
1
C

F = 0. (22)

By this, one arrives at the original Universal Thermostat
Independence (UTI) diff. equation:

K ′′

K ′
=

1
C
. (23)

BVBU Reservoir Fluctuations 18 / 27



Finite Heat Bath and Fluctuation Effects
LHC spectra vs multiplicity

Summary

What is the physics behind q ?
If S leads to q 6= 1, what K (S) achieves qK = 1?

Deformed entropy formula T.S.Biró, P.Ván, G.G.Barnaföldi, EPJA 49: 110, 2013

For ideal gas C is constant, without reservoir fluctuations
q = 1− 1/C and C = 1/(1− q).

The solution of eq.(23) with K (0) = 0, K ′(0) = 1 delivers

K (S) = C
(

eS/C − 1
)

(24)

and one arrives upon using K (S) =
∑

i piK (− ln pi ) at the statistical
entropy formulas of Tsallis and Rényi:

K (S) =
1

1− q

∑
i

(
pq

i − pi
)
, S =

1
1− q

ln
∑

i

pq
i (25)
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Deformed formula with C and λ constant

Demanding qK = 1, due to F = 1/K ′ one obtains in general the
diff.eq.

λK ′ 2 − K ′ + (C + λ) K ′′ = 0. (26)

First integral (with constant λ and C∆ = λ + C )

K ′(S) =
1

(1− λ)e−S/C∆ + λ
(27)

Second integral of the DE ,

K (S) =
C∆

λ
ln
(

1− λ+ λeS/C∆

)
. (28)

BVBU Reservoir Fluctuations 20 / 27



Finite Heat Bath and Fluctuation Effects
LHC spectra vs multiplicity

Summary

What is the physics behind q ?
If S leads to q 6= 1, what K (S) achieves qK = 1?

K (S)-additive composition rule

With the result (28) the K (S)-additive composition rule,
K (S12) = K (S1) + K (S2), is equivalent to

h(S12) = h(S1) + h(S2) +
λ

C∆
h(S1)h(S2) (29)

with
h(S) = C∆

(
eS/C∆ − 1

)
. (30)

This is a combination of the ideal gas entropy-deformation,
h(S) and an Abe – Tsallis composition law with q − 1 = λ/C∆.
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Non-extensive limit?

Using the auxiliary hC(S) = C(eS/C − 1) function,

our result is ,

Kλ(S) = h−1
C∆/λ

(
hC∆

(S)
)
.

For λ = 1 it is obviously K 1(S) = S. For λ = 0 we get K 0(S) = hC(S).

A particular limit: C →∞, λ→∞ but λ/C∆ → q̃ − 1 finite:

KNE (S) = h−1
1/(q̃−1)

(S) =
1

q̃ − 1
ln (1 + (q̃ − 1)S) . (31)

K-additivity: S12 = S1 + S2 + (q̃ − 1)S1S2 .
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Generalized Tsallis formula

based on K (S) =
∑

i pi K (− ln pi ) ,
Kλ(S) =

C∆

λ

∑
i

pi ln
(

1− λ+ λp−1/C∆

i

)
. (32)

Normal fluctuations: K1(S) = −
∑

i pi ln pi is exactly the Boltzmann
entropy!
No fluctuations: K0(S) = C

∑
i

(
p1−1/C

i − pi

)
is Tsallis entropy with

q = 1− 1/C.
Extreme large fluctuations and arbitrary C(S):

K∞(S) = ln (1 + S) =
∑

i

pi ln (1− ln pi ) . (33)

The canonical pi distribution is Lambert W, it shows tails like the Gompertz distribution
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Statistical vs QCD power-law

The experimental fact for hadrons is NBD!

QCD power-law: constant power (k + 1) > 4 (conformal
limit)
statistical power: (k + 1) = 〈n 〉 /f ∝ reservoir size
data fits: ALICE LHC k + 1 powers vs Npart

soft and hard power-laws differ for large Npart
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Soft and Hard Tsallis fits: ALICE PLB 720 (2013) 52

change at pT = 4 GeV.
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Trends with Npart

Figure : C = k + 1 powers of the power law and fitted T parameters.

BVBU Reservoir Fluctuations 26 / 27



Finite Heat Bath and Fluctuation Effects
LHC spectra vs multiplicity

Summary

Summary

There are S′(E)-temperature fluctuations due to finite reservoirs;
they are never exactly Gaussian.

Ideal gas reservoirs with NBD or BD number fluctuations lead to
exact Tsallis distributions: q = 1 + 1

k+1 and q = 1− 1
k .

Tsallis distribution is the approximate canonical weight with
fluctuating reservoirs: q = 1− 1/C + ∆T 2/T 2 .

A general method (UTI) is presented to derive optimally additive
entropy: K (S) for qK = 1 .

New entropy formula; for infinite temperature fluctuations at finite
heat capacity it is parameter – free.

K (S) =
∑

i

pi ln (1− ln pi) .
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