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Abstract

Thermodynamic stability of materials is investigated in the presence of
internal variables. The possibility of phase boundaries in nonequilibrium
solid materials is considered which suggests the concept of phase breaking
similar to the phase transitions in case of fluid and gaseous systems. Two
particular models of damage mechanics are proposed and investigated
in more detail as illustrative examples. Both models are direct thermo-
dynamic generalizations of well known damage mechanical models con-
sidering general loading conditions. According to these thermodynamic
suggestions a new failure criterion is suggested for microcracked materials
and compared with experiments and other criteria.

1 Introduction

Discussing the mechanical properties of materials (brittle, quasi-brittle and duc-
tile) we can distinguish between two kinds of theories. There are theories for
the failure (yield) dealing with the strength of different materials and there are
theories that give the change of mechanical properties under different loading
conditions. The two kinds of models appear separately. The models in the
first group, the damage motivated failure theories do not say anything about
the change of mechanical properties (e.g. stiffness) of materials. The classical
energy condition of Griffith gives an example. The second group contains most
of the rheological models for ductile or damage mechanical models for brittle
materials. Some damage mechanical theories can give more information, one of
their appealing properties is that an increasing damage leads to failure therefore
a damage theory can result in a failure/fracture criteria at the same time. Un-
fortunately this is rather an exception than a rule, most of the damage theories
introduce the critical damage ad hoc, giving a single critical value or a whole
”damage surface” for different loading conditions.

The problem is that the mechanical properties of real materials, the ex-
perimental facts show confusing complexity. One can meet a lot of connected
and frequently parallel phenomena. Brittle-ductile transitions, localization, dif-
ferent microstructural effects are the most important aspects that a damage
theory should take into account. On the other hand, materials with different
microstructure and different microscopic damage processes can show similar
stress-strain relations in experiments and in micromechanical-statistical models
(see for example the investigations of Kemeny and Cook [1]). Therefore the mi-
croscopic details seem to be negligible and we can hope a unified damage-failure
theory on the base of phenomenological thermodynamic principles.

The thermodynamic models for describing the mechanical properties of ma-
terials and the change of the microstructure introduce internal thermodynamic
variables of different tensorial order. Recently several thermodynamic models
were proposed for brittle and quasi-brittle microcracked materials (see e.g. in



[2, 3]). According to these investigations we can see that continuum damage
mechanics is able to produce a fitting of experiments in a lot of details but
the price we pay is that failure appears as an external condition to be mea-
sured. Equilibrium thermodynamics suggests a well defined mechanism to deal
with material instabilities: the notion of phases and phase transitions. Failure
is a kind of material instability. To give a possible description of the connec-
tion of damage and failure we investigate whether we could extend the usual
equilibrium thermodynamic formalism to nonequilibrium theories with internal
variables.

2 Internal variables and stability:
thermodynamic requirements

It is well known that the Second Law expresses a stability requirement for
materials. There are two different aspects to be considered:

– Thermodynamic stability; the convexity of entropy function. This is a
static stability requirement that ensures the stability of equilibrium states
of matter in case of external perturbations of the thermodynamic state,
independently of the particular dynamic equations. Phase boundaries
appear where thermodynamic stability is violated.

– Dynamic stability of thermodynamic equilibrium; positive entropy produc-
tion, where a particular dynamic equation of matter is considered. The
connection between the two stability concepts is clear, both thermody-
namic and dynamic stability restrict the possible functional form of the
constitutive functions to give together the asymptotic stability of thermo-
dynamic equilibrium [4, 5]. For homogeneous (discrete) systems this idea
was developed in detail giving a remarkable conceptual background of the
Second Law [6, 7, 8, 9].

Now, in this paper this stability point of view of thermodynamics gives the
key to the understanding of the proposed frame for the unified treatment of
fracture and failure of brittle materials.

In the last decades the theory of internal variables has been an important
contribution to equilibrium and irreversible thermodynamics. This is a rel-
atively simple way to treat phenomenological thermodynamic systems out of
local equilibrium. Several kinds of internal variables are introduced in the lit-
erature under different names depending on what properties of the equilibrium
variables are preserved and extended. As a simplest classification we distinguish
between internal variables describing the history dependence (see Coleman and
Gurtin [10]) and internal variables related to neighborhood sensitivity, nonlo-
cality of equilibrium state variables (see e.g. [11]). Here in the following we
use internal variables in the first sense (history dependence), and we require
that they should vanish in local equilibrium [12]. Several special theories with
a lot of applications were developed using this concept. For example, in the so



called ”extended thermodynamic” theories Onsagerian currents are introduced
as internal variables. However, the success of thermodynamic theory of metal
plasticity shows an example that the applicability of internal variables is beyond
extended thermodynamics [13].

The early, ad-hoc applications of internal variables to explain some experi-
mental anomalies introduced additional terms into the governing equations (re-
sulting e.g. in the Cattaneo-Vernotte heat conduction, etc..) but later a general
thermodynamic frame was developed to make the dynamic equations compati-
ble with the Second Law. The key revelation in this unification was a kind of
canonical representation starting from the following separation of the entropy
function into an equilibrium and non-equilibrium part

S(xe, α) = Se(xe)− 1
2

N∑

j=1

mj(αj)2, (1)

where the vector xe = (xei), i = 1, ..., n of classical equilibrium variables form
the equilibrium state space which together with the vector α = (αj), j = 1, ..., N
of internal variables constitute the nonequilibrium state space. The positive or
positive definite quantities m = (mj), j = 1, ..., N are the thermodynamic in-
ductivities. The above form of the entropy function was introduced by Gyarmati
[14] and has been used extensively in the literature of extended thermodynam-
ics. This representation is based on the Second Law, the requirement that the
entropy function should have a maximum at local thermodynamic equilibrium
[15]. In case of fluid and gaseous phases this form of the entropy function can
be supported by statistical, kinetic calculations. However, the nonequilibrium
variables α can be introduced in an abstract manner: due to the Morse lemma,
any real physically motivated variable can be transformed in such a way that
the entropy function has the form (1) in a neighborhood of local equilibrium.
Unfortunately, this form of the entropy has some disadvantages:

– According to (1) the entropy function S is globally concave (moreover has
a maximum) on the nonequilibrium part of the state space, in the internal
variables α. However, as it was mentioned, this is an approximation,
there is a neighborhood of the equilibrium state, where it is valid. This
neighborhood depends on the considered transformation and can be very
small.

– The nonequilibrium variables do not necessarily have a clear physical in-
terpretation, the mentioned transformation in the Morse lemma can mix
several physical variables.

The first point suggests some interesting questions and possibilities. If the
form (1) is not global, the nonequilibrium entropy is not necessarily a convex
function in the whole nonequilibrium phase space. In the equilibrium phase
space the violation of the convexity means the loss of thermodynamic stabil-
ity, a presence of a phase boundary. What can be a meaning of the loss of



thermodynamic stability in the nonequilibrium state space? Is there a physical
phenomenon which can be well described with the help of this concept?

As regards the second point, the form (1) is not the only nonequilibrium
entropy function used in macroscopic physics. There are examples with more
physical internal variables resulting in more complicated nonequilibrium entropy
functions. For example, the classical director theory of liquid crystals is based
on a different expression (see the original contributors [16, 17]).

Therefore, we may look for phenomena where a nontrivial entropy function
is convex near to equilibrium, but the thermodynamic stability is violated for
sufficiently large internal variable values. In the following we will see that the
damage and the change of mechanical properties of brittle materials (rocks,
glasses, ceramics) could give an example: simple models can be proposed where
a natural, physically motivated entropy function arises. In this paper we in-
vestigate the thermodynamic stability of some particular entropy functions and
compare the results with empirical strength criteria.

3 Irreversible thermodynamics of damaged ma-
terials

Solid materials can be classified by their uniaxial stress-strain curves beyond the
traditional elastic regime. One of the possible classifications is to distinguish
between the ideally plastic (ductile) and brittle materials (Fig 1/a,b) and their
combination as for example the special quasi-brittle and ductile-brittle behavior
(see Fig 1/c,d) [2]. The dashed arrows on the figures denote the characteristic
unloading curves. The plasticity is characterized by the residual strain and
the brittleness is explained by defects destroying the cohesion of the material.
However, the interpretation of these curves with internal structural changes is
not very straightforward. For example, the strong rate dependence of these
relations can be an important aspect to consider. The same material can be
ductile with high loading rates and brittle for slow ones and contrary. On the
other hand, similar curves can cover very different internal structural changes:
dislocation movements in metals, cracking in rocks and grain movements in soils
can lead to the same ’plastic’ behavior.

In the following we will develop an internal variable approach to deal with
a group of materials (like ceramics, rocks, ...), generally considered as brittle,
where the microcracks form the typical microstructural change, the damage.
In this case the interpretation of the internal variables is more or less clear
and it can be exploited in developing special simple models. In microcracked
materials the internal defects can be idealized as penny shaped thin holes and
usually are represented by their surface vectors. In general, we characterize the
microstructural changes resulting in the damaged behavior with internal vari-
ables αi, i = 1, 2, .., N , denoted by a single vector α = (αi). Their number and
tensorial order depend on the physical mechanisms to be considered and on the
intended degree of approximation of the real material behavior. With the above



mentioned penny shaped cracks the damage is best represented by the distri-
bution function of the microcrack surface vectors and the related macroscopic
internal variables can be the different moments of this distribution function
[18, 19]. These kinds of internal variables are of averaging type, they are imag-
ined as ”smoothed out” local internal variables in space, i.e. spatial averages
of local internal variables over a representative volume element (see e.g. [20]).
Of course a simple average of the micro surface vectors can also be good for
several purposes, like the directors in the mentioned theories of liquid crystals,
with similar restrictions [21].

In any case, with these averaging type variables the conjugated ’intensive’
variables, the corresponding affinities vanish at equilibrium states, in this sense
they are dynamic degrees of freedom [22, 23, 12]. Moreover, a thermodynamic
process can be assumed to be continuous. On the other hand, as we are dealing
with internal variables representing different kinds of damage in elastic material,
some or all of the introduced internal variables can be frozen. In case of some
frozen internal variables the material is not in a thermodynamic equilibrium in
the sense that the corresponding affinities are not zero, that is, the material is
in a constrained equilibrium. After these preliminary considerations we can go
ahead to formulate the corresponding thermodynamic frame.

3.1 Statics

We concentrate upon the mechanical properties, therefore electromagnetic, chem-
ical, diffusive, etc. effects are excluded in our treatment. In the following all
quantities and fields are defined relative to the reference configuration. First we
treat the appropriate thermodynamic theory for homogeneous (discrete) mate-
rials. The static and dynamic thermodynamic requirements are strongly dis-
tinguished. This treatment can serve as a ’thermostatic’ background of a con-
tinuum description, where we can say that we consider a representative volume
element in the usual way: Sufficiently large in size to behave macroscopically
as if it were homogeneous and sufficiently small to be treated as a point in a
continuum.

The traditional equilibrium state space of the variables xe = (s, ε) is supple-
mented by the vector of internal variables α. The corresponding nonequilibrium
state vector and state space of our mechanical system is therefore denoted as
(s, ε, α) ∈ Du. A(s, ε, α) = (Ai(s, ε, α1, ..., αN )), i = 1, ..., N will be called the
affinity conjugated to α. The Gibbs relation can be given in our case as

du = Tds + t : dε−A · dα, (2)

where u is the internal energy density, s is the entropy density, T is the absolute
temperature, and ε and t are the deformation and the stress, respectively. As
we are in the reference configuration, t coincides with the Cauchy stress. The
colon denotes the contraction of second order tensors and the dot a similar oper-
ation with the affinities and internal variables, considering, that their tensorial
properties are not specified. The assumed validity of the Gibbs relation means



that the Kelvin-Planck form of the Second Law, the existence of the entropy
function is applied for non-equilibrium states and processes. Regarding that our
investigations are strongly related to the stability of the mechanical material,
the extent and the content of this assumption is clear, moreover, as a particular
example, shows the possible limits of similar extensions.

Since we are dealing with pure mechanical systems it is convenient to intro-
duce the Helmholtz free energy density as a partial Legendre transform of the
internal energy u with respect to s,

φ := u− Ts = φ(T, ε, α). (3)

The corresponding form of (2) becomes

dφ = −sdT + t : dε−A · dα. (4)

Therefore the partial differentials are

s = − ∂φ

∂T
, t =

∂φ

∂ε
, A = − ∂φ

∂α
(5)

and the corresponding state vector in the state space is denoted by (T, ε, α) ∈
Dφ.

Finally a third thermodynamic potential is introduced, the Gibbs free energy
as a partial Legendre transform of φ with respect to ε

ψ := φ− t : ε = ψ(T, t, α). (6)

The corresponding form of the Gibbs relation follows

dψ = −sdT − ε : dt−A · dα. (7)

Here the state vector is (T, t,α) ∈ Dψ and the partial derivatives are

s = −∂ψ

∂T
, ε = −∂ψ

∂t
, A = −∂ψ

∂α
. (8)

Sometimes this state space and the Gibbs free energy are the most convenient
to treat mechanical problems.

3.2 Thermodynamic stability

Only the Helmholtz and Gibbs free energy representations are considered and
the temperature is supposed to be constant (a pure mechanical problem is
treated). The general requirement of thermodynamic stability states that the
Helmholtz free energy should be a concave function of its variables. In case of
two times differentiable free energy a material is thermodynamically stable at
a given fixed temperature T with deformation ε and internal variable α, if the
second derivative of the Helmholtz free energy is a positive definite function:

(dε, dα) ·D2φ(ε, α) · (dε, dα) = (dε, dα) ·




∂2φ
∂ε2

∂2φ
∂α∂ε

∂2φ
∂ε∂α

∂2φ
∂α2


 ·

(
dε
dα

)
≥ 0 (9)



for every (dε, dα). Here we applied a notation from the mechanical literature
denoting by dε and dα arbitrary vectors from the linear spaces where the defor-
mation ε and the internal variables α were defined. In this sense for example dε
can be an arbitrary symmetric second order tensor. D2φ denotes the derivative
of φ with respect to its variables ε and α. In the following we will assume that
the functional form of the free energy does not contain differential or integral
operators. However, the process dependence of the corresponding equations is
considered through the introduced internal variables. Therefore the resulted
stress-strain relations will be clearly rate dependent, but a rate form notation
is not necessary and could even be misleading. Let us remark here that the
generality of the treatment is not restricted by this assumption. The different
kinds of internal variables can give rate and gradient dependent stress-strain
relations.

A (partially) convex Helmholtz free energy gives requirements for the Gibbs
free energy, but these requirements cannot be expressed as a simple concavity of
convexity for all variables (one can say that the Gibbs free energy is convex in
the internal variables and concave in the other ones). Therefore a conversion to
Helmholtz free energy can be useful for thermodynamic stability calculations.

The subset of the state space where these conditions are satisfied determines
the stability domain of the damaged material. Outside this domain the equilib-
rium of the damaged material is unstable, without further constraint the sample
fails. The boundary of the stability domain in the corresponding state space
will be called the damage surface.

It is interesting to investigate the previous conditions more closely! In case
of fluid or gaseous media with equilibrium state variables the stability loss in-
dicates a phase boundary and a phase transition to an other phase. In case
of damaged bodies the failure changes the properties of the material and the
internal interactions (for example the cohesion vanishes and dry friction will
be the dominating dissipation mechanism). However, in this case all of our
previous assumptions on the homogeneous representative volume elements can
become meaningless. In solid materials we cannot speak unambiguously of an
other homogeneous phase after the loss of thermodynamic stability, in a contin-
uum description the phases are immediately localized. This is best seen if we
consider the above condition (9) of stability loss which can be interpreted as a
generalization of the classical Hadamard-Hill condition of shear banding. Using
purely mechanical arguments and investigating jump surfaces in the velocity
field [24, 25, 26], shear banding appears in the direction n if

det(n ·C · n) = 0, (10)

where C is the fourth order stiffness tensor, that can be given as the partial
derivative of the free energy,

C :=
∂2φ

∂ε2
.

We can see that C is the (1, 1) submatrix in our general thermodynamic sta-
bility condition (9). A necessary condition of this submatrix be positive definite



is the classical localization condition (10) of Hadamard and Hill. The require-
ment of a positive definite elastic moduli can be derived from energetic-stability
considerations resulting in a more general localization condition. This general
energetic localization condition considers shear-banding and cleavage type local-
ization instabilities (see e.g. [2, 27]). Our condition (9) can be considered as a
generalization of these classical requirements, but it is important that here the
positive definity of the internal variable part is not taken as granted.

Therefore the loss of thermodynamic stability, at least in some cases, does
not result in a homogeneous change in the material but indicates the appear-
ance of some localized patterns, for example shear bands. Hence the analogy
with phase transitions can be misleading so, instead of phase transitions, we
can call this phenomena as phase breaking. This kind of localization condition
is characteristic of solid materials because in fluids and gases the stiffness is a
diagonal tensor (in equilibrium, neglecting the viscosity), therefore any local-
ization phenomenon is strongly connected to the appearance of higher order
space derivatives in the constitutive equations. In solid materials the two kinds
of localization (’local’ and ’nonlocal’) can appear together. Let us remark here
that in lattice models, treating microcracking as a nucleation process, this fact
is not considered (see e.g. [28]). The proposed equations describing the cracking
are all of a nonlocal type.

3.3 Dynamics

Let us proceed to find a proper form of the entropy production. We are treating
a pure mechanical situation, consequently only the mechanical work contributes
to the internal energy balance [29, 23]:

u̇ +∇ · q = t : ε̇. (11)

Here q is the conductive current density of the internal energy (heat cur-
rent). The dot above the quantities denotes substantial time derivative and
we suppose that the deformation of the body is small. Using the balance of
internal energy (11) and assuming that the entropy flux has the classical form
Js = q/T (neglecting nonlocal effects [30]), we can obtain the density of the
entropy production with the help of the Helmholtz and Gibbs free energies:

Tσs = q · ∇
(

1
T

)
+

(
t− ∂φ

∂ε

)
: ε̇− ∂φ

∂α
· α̇ =

= q · ∇
(

1
T

)
+

(
∂2ψ

∂t2

)−1 (
ε +

∂ψ

∂t

)
: ε̇− ∂ψ

∂α
· α̇ ≥ 0. (12)

It is easy to identify the thermodynamic currents and forces in the expres-
sion above. In the following we will treat isothermal processes and a uniform
temperature is supposed in the solid, therefore the first term in (12) will be miss-
ing. In case of brittle solids, assuming a local mechanical equilibrium means a
zero thermodynamic force for the mechanical interaction, that is why we will



suppose that the viscous stresses are zero, too. The entropy production density
then reduces to

Tσs = t · ε̇− φ̇− sṪ = A · α̇ ≥ 0. (13)

This inequality of the second law imposes a condition on the evolution equa-
tions for internal variables which can be assumed in the form

α̇ = fi(A,xi), (14)

where xi, i = u, ψ, φ is an element of the corresponding state space. The other
prescriptions and physical requirements imposed on the dynamics are included
in the further properties of fi.

The first property of fi is that in case of small stresses there is an elastic
domain Ei in the i state space of the solid material in which the stress strain
relations of our sample are ideally elastic and changes in α are responsible for
the anelastic strain, thus

fi(A,xi) = 0, if xi ∈ Ei. (15)

The condition above defines the elastic domain as a part of the state space where
all the internal variables are frozen. Naturally, we can consider more general
situations where only some of the internal variables are frozen, defining separate
elastic domains of the different variables. The elastic domains above given in a
particular state space can be transformed into each other. The boundary of Ei,
denoted by ∂Ei, will be called damage initiation surface, inside this boundary
the internal variables are frozen, outside they can evolve.

The second property of fi comes from the requirement that a zero affinity
A implies zero changes in α, i. e.

fi(0,xi) = 0. (16)

We call attention to that, however fi(0,xi) = 0 does not imply A = 0.
Only the equilibrium where A = 0 are to be considered as true thermodynamic
equilibrium states. When A 6= 0 there is a force toward the thermodynamic
equilibrium, but some kinematic, ’freezing’ constrains can keep the material in
a ’prestressed’ state. In the following we will give an example of this kind of
particular kinematic freezing condition for damage processes.

The previous two conditions (15) and (16) together with the third one im-
posed by the Second Law (13) results in a simple linear Onsagerian approxima-
tion of the dynamic equation. Using the Lagrange mean value theorem we can
write in general

α̇ = L(x)A(x). (17)

Let us emphasize again that we developed a linear approximation around the
thermodynamic equilibrium state and not around the instantaneous kinematic
equilibrium, characterized by the frozen internal variables. On the other hand,
we can use the full nonlinear general dynamic equation (14) keeping in mind the
restrictions from the Second Law (13) the freezing and the equilibrium conditions
(15) and (16).



4 The simplest models of microcracked damage

Up to this point we followed a treatment like the traditional thermodynamic
theories of plasticity. However, in (metal) plasticity internal variables represent
dislocation movements and some other kind of dissipative changes in the internal
structure that are more or less similar to dry friction. In case of a microcrack-
ing induced damage, the internal processes are different. Cracks are opening
and closing and this mechanism has some specific features that we should con-
sider. For modeling purposes it is convenient, as a first step, to neglect friction.
Though in real materials the two different (frictional and opening) mechanisms
can work together, sometimes they are hardly distinguishable, there are no ideal
microcracked materials without some friction.

In the following we will investigate a simple model of microcracking, intro-
ducing a single damage variable. Microcracking damage is essentially a three
dimensional phenomena, therefore the simplest representation of the damage
can be a single damage vector D. For idealized penny shaped microcracks this
internal variable can be interpreted as the average of the microcrack vectors
in a representative volume element. Therefore the damage vector is an axial
vector, whose direction is not but only its orientation is important. Naturally, a
single vectorial, average type internal variable is a simplification, and the most
important limit of its applicability is, that it cannot take into account sepa-
rately growing damage in different directions. However, with simple loading
histories (e.g. one or two axes loading) we can expect that our model will be
in a good agreement with the experiments. More internal variables with higher
tensorial orders or the whole distribution function as a variable could give bet-
ter, but more complicated models. As we mentioned previously, the situation
is similar to liquid crystals, where the macroscopic director theory of Ericksen-
Leslie-Parody-Verhás gives a good description in situations near to a totally
aligned state of liquid crystal molecules [21].

An important characteristic experimental property of microcracked materi-
als is the so called Kaiser effect. The noises attributed to the extending mi-
crocracks can be detected in a preloaded sample when the reloading arrives at
the previously applied highest stress level. This is observed in several directions
separately. For some special brittle materials, e.g. rocks, it can be used to dis-
cover the loading history (the formerly applied peak stresses) [31]. This effect
and the typical stress-strain relations (reloading gives an approximate linear be-
havior, see Fig 1) can be explained assuming that under normal environmental
conditions a crack cannot heal, or at least the healing capability of the cracks
is restricted [32, 33]. Of course, with higher temperatures or in extremely clear
environments the microcrack extension is reversible and the Kaiser effect disap-
pears. In the following we will investigate the ideal case of totally irreversible,
non-healing cracks. From a thermodynamic point of view the Kaiser effect is a
typical manifestation of frozen internal variables. Moreover, in this case we can
give an explicit damage initiation condition. Namely, it is reasonable to assume
that an increasing stress makes the damage grow, therefore a straightforward



explanation of the Kaiser effect is that the size of the cracks can only grow,

d
dt

(D ·D) = 2D · Ḋ ≥ 0 (18)

From a thermodynamic point of view (18) means an inherent irreversibility
of the microfracturing process, as a result of chemical reactions on the crack
surfaces. Those processes are usually on a different time scale, therefore their
detailed investigation beyond the requirement (18) is not included in this treat-
ment. If we consider the length and the orientation of D as separate internal
variables, then the size of the cracks is a kind of unilateral thermodynamic vari-
able [34]. On the other hand, condition (18) together with the dynamic equation
(14) (or (17)) determine whether our dynamic variable D is frozen or not. The
elastic domain in a free energy state space can be given as

Eφ(T,D) = {(T, ε,D)|D · fφ(T, ε,D) ≤ 0}.
The damage initiation surface ∂Eφ is the boundary of the set Eφ. Therefore

the full dynamics including the elastic domain can be given as:

Ḋ =

{
fφ(T, ε,D), if D · fφ(T, ε,D) ≥ 0
0, otherwise.

(19)

To arrive at an applicable thermodynamic model of microcracking, the cru-
cial point is to give a reasonable form of the entropy (free energy) function. We
can find several suggestions in the literature. The energy condition of Griffith
can be considered as the first example [35]. The proper thermodynamic frame
interpreting the energetic stability considerations of Griffith was given later by
Rice [33]. For uniaxial loading conditions (mostly for tensile loading) several
other particular forms were derived [36, 37, 38]. All of these suggestions want
to preserve the original Griffith condition as a special case. Another group of
free energy functions was suggested to take into account an anisotropic damage
evolution. For example, using general representation principles, several models
were proposed with a single vectorial internal variable, too [39, 40, 41]. We
can find examples also for direct generalizations of the one dimensional models
of Rabotnov and Kachanov [42, 43]. These models are particularly attractive,
because they contain an inherent built in instability (supposing the 1/(1 −D)
form of the compliance) and at the same time the canonical form of the nonequi-
librium entropy (1) is preserved. It is remarkable that all suggestions suppose
an interaction between the equilibrium mechanical variables (strain or stress)
and the introduced internal variables: in the Helmholtz (or Gibbs) free energy
the two kinds of variables are not separated any more.

In the following we suggest a specific Helmholtz free energy and a Gibbs
free energy based on representation theorems and we will see that, without any
other assumptions, this general form can result in a thermodynamic instability
with increasing damage. We will investigate the most general second order
polynomial approximation of the free energy and the Gibbs function for isotropic
materials in both cases. The two forms are not equivalent at all, but both have
some appealing properties.



4.1 Model I. (Helmholtz free energy representation)

The second order polynomial approximation of the specific free energy φ at
constant temperature according to the representation theorems of Pipkin and
Rivlin [44] is

φ(ε,D) = (δ + kδD2)Trε + (µ +
kµ

2
D2)ε : ε +

1
2
(λ + kλD2)(Trε)2 +

+
α

2
D2 +

1
2
(β + kβTrε)D · ε ·D +

γ

2
D · ε · ε ·D. (20)

Due to the isotropy, only ten material parameters appeared in our expression
which is an extension of the free energy of purely elastic isotropic solids. The
above expression gives a free energy for general loading conditions, moreover it
does not contain specifications on the considered dissipation mechanism. The
number of new material parameters can be reduced by physical (micromechani-
cal) assumptions and calculations. Moreover, all terms in the expression can be
interpreted from a physical point of view:

– The first term is related to the hydrostatic energy conservation of the
material. δ characterizes the damage independent and kδ the damage
dependent part. Pore fluid pressure can be a physical mechanism in the
background. (All of the material parameters can depend on temperature
and density of the material.)

– The next two terms are the usual elastic free energy contributions where µ
and λ are the well known Lamè coefficients. kµ and kλ characterize their
damage dependence.

– The fourth term represents the energy attributed directly to the cracks.

– D · ε ·D is the deformation at the direction of the crack surface, therefore
the fifth term considers the opening of the cracks.

– The last term contains the square of the substantial crack vector change
D · ε, therefore it means an energy contribution necessary for turning the
cracks with the deforming media.

Another clue to the interpretation of the material parameters can be given
by the equation of the mechanical equilibrium (the second formula of (5))

t = (δ + kδD2)I + (2µ + kµD2)ε + (λ + kλD2)TrεI + (21)

+(β + kβTrε)D ◦D + kβD · ε ·DI +
γ

2
(D ◦ ε ·D + D · ε ◦D).

where I is the unit tensor and ◦ is the usual notation of the tensorial product in
continuum physics. Let us observe that having a linear equation, we can easily
introduce a kind of plastic strain, solving the above equation for the deformation
ε with zero stress (since we want to attach the word ’plastic’ to some specific



internal mechanism, a nomination damage strain is more appropriate). To find it
we should first define a ’damage (plastic) stress’ t0 belonging to zero deformation
as

t0(D) := t(0,D) = (δ + kδD2)I + βD ◦D.

This equation immediately gives a meaning and suggests measurement meth-
ods for the parameters δ, kδ and β. With the damage stress the fourth order
stiffness tensor C is given by the relation

t(ε,D) = t0(D) + C(D) · ε,

therefore, the damage strain ε0(D) will be

ε0(D) = −C−1(D)t0(D).

Moreover, equation (21) of the mechanical equilibrium shows well that the
suggested free energy function can be considered as a direct generalization of
the idea of the classical Kachanov-Rabotnov theory (where the damage can be
connected to the reduction of the effective load carrying area) (see e.g. [45]).
In this case, in every direction n, a second order damage tensor Dn can be
introduced with the help of the stiffness as n · C · n = I − Dn. A detailed
interpretation of the damage in this direction is given in [42, 43].

One of the advantages of our internal variable model is that we can give
explicitly the thermodynamic stability threshold (9) (therefore the Hadamard-
Hill localization condition, too). Calculating (9) from (20), our first observation
is that there are no values of the material parameters that would result in a
stable material for any strain and damage. Some particular necessary conditions
for the positive definiteness of the matrix (9) can be calculated easily.

1. In case of zero damage the convexity of the free energy is ensured by the
well known sign restrictions of Lamè coefficients

µ > 0 and µ + λ > 0.

2. When the deformation is zero, we get

α > 0.

3. General simple results cannot be derived, but in two dimensions and in
case of some specific conditions for the material coefficients we get upper
limits for the length of the damage:

– If 2kµ + kλ + kβ + λ/2 < 0 then

− 2µ + λ

2kµ + kλ + kβ + λ/2
> D2



– If 4kµ + γ < 0 then

− 4µ

4kµ + γ
> D2

The thermodynamic stability is violated, the material fails if the
length of the damage arrives at these limits.

These inequalities restrict the possible values of the material coefficients
and what is more important, they give material dependent upper limits on the
possible damage values. Let us observe that the damage criterion itself depends
on the material. Contrary to the Kachanov-Rabotnov damage representation,
we obtained two different upper limits for D2.

The second part of the entropy production (12) yields a detailed form of the
mentioned evolution equation of the damage (17) in the first linear thermody-
namic approximation, as

Ḋ = L · (α + 2kµε : ε + kλ(Trε)2 + 2kδTrε)D+ (22)

+ 2(β + kβTrε)D · ε +
γ

2
(ε · ε ·D + D · ε · ε) =: fφ(ε,D),

where L is the symmetric second order Onsagerian conductivity tensor. In
isotropic materials it has a simple form: L = lI, where l is positive because of
the Second Law.

From the equation (21) of the mechanical equilibrium we can get the de-
formation as the function of stress and damage ε = ε(t,D). Introducing these
relations into the differential equation (22), we will get an equation for the
evolution of the damage containing the stresses as parameters:

Ḋ = fφ(ε(t,D),D). (23)

The investigation of this damage evolution equation gives the key for un-
derstanding of failure of brittle materials as the loss of their material stability.
The equilibria of (23) and their stability properties give the deformation as the
function of the stress and at the same time a fracture or failure criterion of the
material.

4.2 Model II. (Gibbs free energy representation)

According to the previous representation theorem, the second order polynomial
approximation of the Gibbs potential for isotropic materials is

−ψ(t,D) = (δ′ + k′δD
2)Trt + (µ′ +

k′µ
2

D2)t : t +
1
2
(λ′ + k′λD

2)(Trt)2 +

+
α

2
D2 +

1
2
(β′ + k′βTrt)D · t ·D +

γ′

2
D · t · t ·D. (24)

Here the notation of the parameters is similar, but constant parameters in
one representation result in different, damage and deformation or stress depen-
dent parameters in the other representation according to the definition of the



potentials (6). The exceptions are the parameter α, which is the same in both
representations and the pure elastic parameters, that are related as we know
from linear elasticity (µ′ = (1 + ν)/2E and λ′ = ν/E, where E is the Young
modulus and ν is Poisson’s ratio). Therefore the above expression with constant
parameters gives a different model from (20). The interpretation of the terms
can be given similarly as has been done for Model I.

It is important to put down again the equation of the mechanical equilibrium
(the second formula of (8))

ε = (δ′ + k′δD
2)I + (2µ′ + k′µD

2)t + (λ′ + k′λD
2)TrtI + (25)

+(β′ + k′βTrt)D ◦D + k′βD · t ·DI +
γ′

2
(D ◦ t ·D + D · t ◦D).

Now the damage strain (the strain at zero stress) is directly calculable:

ε0(D) := ε(0,D) = (δ′ + k′δD
2)I + β′D ◦D.

This particular Gibbs free energy can be considered as a direct generalization
of the ideas of Griffith in two different ways, applying the two conditions given in
his original paper [35]. First we may accept the interpretation of Rice and Lawn
[46, 33] and say that the energy condition can be connected directly to the Gibbs
potential. Therefore the thermodynamic force governing the evolution of crack
extension is the energy release rate G minus the reversible work W necessary
to the crack separation. More properly, in two dimensions, in case of uniaxial
tensile loading and a crack perpendicular to the loading axis we can write

ψ(t1, D1) = W (t1, D1) + 2GD1,

where D1 is the length of the crack, t1 is the stress, W is the reversible work
component and the last term is the specific surface energy.

For perfectly elastic materials we can give the work in a more specific form:

W (t1, D1) = − t21
2E

− πt21D
2
1

E
. (26)

Here the first term is the pure elastic work, while the second is the work
necessary for the reversible crack extension (see e.g. the original work of Griffith
[35] or as a thermodynamic treatment the work of Honein at. al. [37]). The
expression above is a special form of the Gibbs function (24) for this particular
situation, where µ′ = (1+ν)/2E, k′µ = π/E, and the other material parameters
are zero.

On the other hand, we can interpret the Griffith theory according to the
predictions of the failure threshold of the material. In two dimensions Griffith
calculates the following condition for a maximal tensile stress on the crack sur-
face, that can be interpreted as an ultimate failure surface in the stress space
for materials containing a lot of randomly oriented microcracks:

(t1 − t2)2 + 8K(t1 + t2) = 0. (27)



Here K is a material parameter depending also on the length of the crack.
This equation can be a part of thermodynamic stability as a necessary condition
for (9). We can recognize the determinant of the damage related submatrix
∂2g
∂D2 (t,D) in the thermodynamic stability condition (9) with special material
parameter values in our particular Gibbs free energy function (24).

As in the previous free energy representation, dynamic equations can be
given and their properties can be investigated and we can obtain a remarkable
correspondence with the observed experimental properties, more details will be
given elsewhere [47]. In this paper we restrict ourselves to the treatment of ther-
modynamic stability thresholds as failure criteria for microcracked materials.

5 Failure and stability

In this section we will investigate the general stability condition derived from the
Gibbs free energy (24) with constant parameter values. First of all, let us men-
tion some experimental evidence regarding the strength of rock like materials
(concrete, ceramics, etc...) under general loading conditions.

– There is a considerable difference between tensile and pressure strength of
rock like materials.

– The damage (failure) surface of these materials has a particular three
dimensional shape in the stress space. For example, according to biaxial
experiments, contrary to Mohr assumptions, not only the difference of the
biggest and lowest principal stresses determine the strength of the rock:
the influence of intermediate stresses is not negligible [48].

The three dimensional failure surface produced from the available empirical
evidence can be summarized qualitatively on Figure 2. Let us observe the
rounded triangle shape on the octahedral plane (cross section perpendicular
to the hydrostatic pressure line). The rate dependence of the failure strength
observed in experiments makes doubt that this form expresses real material
properties [49]. Here we accept the above form as an experimental evidence of
the time independent strength surface of materials.

Most of the strength criteria for rocks were suggested for special loading
conditions but some of them tries to take into account the above mentioned
properties, too. The first and oldest one is the original two dimensional Griffith
criterion based on theoretical calculations for single cracks embedded in an
elastic domain. Later it was generalized to three dimension by Murell extending
some expected properties of the failure surface from two into three dimensions
[50, 32]. This criteria suggests a parabolic failure envelope in case of pressure
loading and a constant limit stress in case of tensile loading conditions (see also
[35, 51]).

Another three dimensional generalization of the criterion of Griffith was used
by Theocaris [52, 53] in his Elliptic Paraboloid Failure Criterion. This criterion
suggests an elliptic paraboloid open from the hydrostatic axis as initial failure



surface in the stress field. It has been proved to be useful to describe the
failure of anisotropic materials and results in a better fitting than the criteria
of Griffith-Murell. Here the failure loci are given by the next equation at the
stress space

t : B : t + b : t = 1,

where B and b are fourth and second order tensors respectively, they are to be
determined experimentally. The parameters should be given in a way that the
failure loci form a paraboloid whose axis is the hydrostatic pressure line. Theo-
caris gives experimental procedures and calculation methods to determine the
failure loci from the experiments. Let us remark that the anisotropic property
introduced in this criterion is not necessarily a material characteristics, because
it can arise from an initially anisotropic damage distribution in case of originally
and materially isotropic base continuum, too. On the other hand, the smooth
paraboloid seems to be a strong simplification for tensile loadings.

As a third possibility, the best fitting to the measured failure surfaces can
be achieved by the criteria of Lade that contains only three material parameters
m, η1 and a,

(I3
1/I3 − 27)(I1/pa)m = η1, (28)

where I1 = Tr(t) and I3 = det(t) are the first and third invariants of the stress
tensor and pa is the atmospheric pressure. Moreover, the normal stresses contain
a translation in the stress space along the hydrostatic axis, the mean stresses ti
in the formula (28) should be replaced with

t̂i = ti + apa where i = 1, 2, 3.

The corresponding material parameters has been calculated for several rocks
from the available (three dimensional) experimental data [48].

All the three criteria are empirical, they were suggested without any serious
theoretical justification. In the following we will see that the thermodynamic
stability condition of our simple model with one vectorial internal variable can
give a comparable fitting, moreover, it has a strong theoretical background as
a direct thermodynamic generalization of Griffith criteria in three dimensions.
To show this we give here a simple example based on the experimental data of
Brown performed on Wombeyan marble with brush plattens [54].

Figure 3 shows the results of biaxial experiments and the corresponding fitted
failure surface of Lade and the failure surface proposed by the thermodynamic
stability condition. The empty dots denote the experimental results and the
thick line is the threshold of the criterion of Lade with the parameter values
m = 1.162, η1 = 601500 and a = 38.0. The thermodynamic criterion results in
the three finer curves. Their internal hull gives the boundaries of thermodynamic
stability. The parameters with the appropriate physical dimensions in SI units
are δ′ = 0, k′δ = 10.9976 ·10−6, µ′ = 23 ·10−12, k′µ = 3 ·10−14, λ′ = −2.8 ·10−12,
k′λ = 0, α = 100, β′ = 11.2156 · 10−6, k′β = 0, γ′ = 3.53 · 10−14. Only
three parameters were used for the fitting, the other non-zero parameters are
calculated from the known properties of the material or estimated suitably.



The initial damage vector was chosen as D = (0.003, 0.003, 0.003), supposing
a uniform damage. Here the chosen particular values are not too important,
because the failure surface is independent on the damage if it is sufficiently
small. It can be seen on the figure that the thermodynamic condition gives a
piecewise differentiable failure threshold (like Griffith, but on an other ground).

Let us observe some important qualitative differences between the empirical
and the thermodynamic criteria. The thermodynamic failure surface is a cross
section of several surfaces, therefore it has some vertices. One of the vertices is
on the hydrostatic axis for tensile stresses. It is similar to the predictions of the
Griffith-Murrel criteria, where also some cross sectional surface was proposed
(a very special one).

Figure 4 shows the whole surface. It can be observed that the surface is
closed from the side of large hydrodynamic pressures. Naturally, the parame-
ters, and the whole Gibbs function can be specified to include the requirement
of an open failure surface from the hydrostatic line. The published data on
this experiment is not sufficient to determine all of the thermodynamic param-
eters (for the fitting we have chosen a suitable parameter set, considering some
physical mechanisms).

However, the concept of failure is not clear from an experimental point of
view. The material can be kept together even when its internal structure is
completely destroyed. As for example it was pointed out by Orowan [51] in the
case of Carrara marble in the classical experiments of Kármán. The marble
became powdered, chalk like with large lateral pressures, which indicates a
change in the internal structure. In this case the previous assumptions on the
Gibbs function aimed to describe a microcracked material become invalid, after
the phase breaking another Gibbs function should be introduced to characterize
the powdered, frictional state.

6 Discussion and Conclusions

In this paper a theoretical concept of nonequilibrium phase breaking is proposed
as a tool to extend the frame of the phenomenological thermodynamic modeling.
As an application of this idea a particular phenomena, the microcrack induced
damage is investigated in detail. Two simple internal variable theories were sug-
gested, using a single vectorial internal variable and based on the most general
second order approximation of the Helmholtz and Gibbs free energies, respec-
tively. We have seen that both models can be considered as generalizations of
traditional continuum damage mechanical models. Furthermore, the domains
of thermodynamic stability and frozen internal variables were suggested as a
thermodynamic interpretation of the experimentally measured linear elastic do-
mains in microcracked materials. The boundary of the stable cracking domain,
that is the thermodynamic stability was proved to be a generalization of tra-
ditional mechanical localization criteria. A comparison with other empirical
criteria showed that our suggested theoretical criteria results in a better fitting
to the available experimental data in a three dimensional stress space.



The dynamical properties of the model are not investigated in this paper, but
it is clear that our simple model can be considered only as a first approximation.
The orientation sensitivity of the Kaiser effect, the fact that the microcracking is
initiated separately in different orientations is surely not included in our model
with a single averaging type internal variable. However, as the present study
shows, to propose an irreversible thermodynamic modeling of the evolution of
the whole microcrack distribution function seems to be promising.

Let us remark here that several lattice models suggest the impossibility of a
’mean field’ description. According to the present investigations, this view can-
not be accepted without any reservations, because the investigations use very
special loading conditions, the considered molecular interactions are too simple
to treat more general cases. Moreover, the applied ideas from nucleation models
developed for fluid systems are based on a different kind of localization mech-
anisms that seems to be present in solid materials. Namely even the simplest
Cahn-Hilliard or Ginzburg-Landau like equations are based on weakly nonlocal
continuum models and in solid bodies some different localization mechanisms
are present and play an important role, too.
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8 Figure captions

– Fig 1 The classification of mechanical materials according to their elastic
properties.

– Fig 2 Failure surface from experimental evidence according to Lade [48]

– Fig 3 Biaxial failure envelope, experimental data, the criterion of Lade
and the thermodynamic failure surface. The main stresses are given in
MPa.

– Fig 4 Thermodynamic failure surface in three dimension
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