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Abstract

An old pursuit is in thermodynamics to connect the second law to the
stability of some processes. This paper gives an interpretation of the
second law based on stability considerations. This approach answers some
problems of the extended irreversible thermodynamics (wave approach to
thermodynamics).

1 1 Stability and the second law in phenomeno-
logical thermodynamics

Every theory in thermodynamics uses the second law, the most important basic
principle of this field of physics. However, the formulations and the meanings
of the second law are loosly related in the different thermodynamical theories ,
moreover we can find different second laws even in a single theory.

There 1s a possibility for the unique formulation that seems to be generally
acceptable. One of the most frequently used form of the second law can be
written as follows:

”The entropy of a closed thermodynamical system grows.”

An old conjecture in thermodynamics is that the content of this sentence can
be grasped in a rigorous way with the help of some kind of Liapunov stability
and Liapunov function. There are examples that try to connect this formulation
of the second law to some concepts of stability in the continuum thermody-
namical theory [1-5] and establish relation between the second law, entropy and
asymptotic stability of the equilibrium.

The evolution of a thermodynamical system 1s given by a differential equa-
tion. Moreover some thermodynamical conditions and constitutive assump-
tions, which are sometimes considered in themselves as the second law, are



additional prescriptions for the differential equation. They will imply together
that the equilibrium of a closed (and some open) thermodynamical system will
be asymptotically stable, and the entropy function is closely connected to a Li-
apunov function of the equilibrium. Of course, the Liapunov function is related
to the equilibrium of the original differential equation (not to the linearized one)
resulting in non-linear stability in a definite neighbourhood of the equilibrium.

We can apply these considerations in thermostatics [6,7] and in rational
thermodynamics [5]. In this paper we investigate some concequences of these
ideas in extended irreversible thermodynamics.

Regarding the technical difficulties arised on the application of Liapunov
direct method to partial differential equations we refer to Walker [8].

2 The second law in classical irreversible ther-
modynamics

In this chapter we investigate one of the most simple continuum thermodynam-
ical system which can be described by its density, velocity and specific internal
energy.

We will consider a continuum in a classical spacetime, and in a given system
of reference. In this case our quantities are defined on some connected open
bounded set U/ € B? with a smooth boundary. ¢ := (p,u,e) : U x B —
Rt x B® x BT, where p is the density, u is the velocity field and e is the specific
internal energy as a function of space and time. It is possible to give a more
general, reference frame independent (absolute) description, but it would require
more mathematical tools [9,10].

In the present case the classical evolution equation of the continuum is given
as follows
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where P, k are the pressure tensor and the heat flow (conductive current of
the internal energy); V, V- denotes well known differential operators; P is
symmetric (the internal angular momentum is zero). To make this problem to
a well determined Cauchy problem we should give how P and k depends on
the independent variables, giving some constitutive functions (equations), and
giving some initial and boundary conditions.

In this chapter we restrict ourself to the case of local equilibrium in the
following manner:

The state functions (equations) of the temperature and pressure are defined
as (T,p) - RY x BRY — Rt x B, (p,e) — (T,p)(p,e). The specific entropy



function s : RY x BT — R (p,e) — s(p,e). has the properties

Glen = Fen, Gen =), )

These properties can be considered as a definition of the entropy [6,7]. Fur-
thermore we suppose that the entropy as a function of (e,v) — where v := 1/p
is the specific volume — is concave, its second derivative is negative definite. In
our treatment it 1s more suitable to use the density as an independent variable.
In this case the following inequalities means a necessary and sufficient condition
for the concavity mentioned above, according to Sylvester criteria:

T dpdT  JpdT

We can define the chemical potential function, as usual

ple, p):=e—"T(e, p)s(e, p) + ple, p)/p-

The constitutive function (usually called constitutive equation) for P:

P(p,u,e) = ple,p)I + P"(p,u,e),

where PV is the viscous part of the pressure tensor, and I is the identity map
of B3,

Our irreversible thermodynamical system is closed, internal energy and ma-
terial cannot flow out, thus the boundary conditions are the followings: the
normal component of k and u on the boundary of U is zero. The remainig,
not specified boundary conditions make our problem definit together with the
initial conditions.

Our last assumption is the Clausius-Duhem inequality, that we should in-
terpret as a prescription for the constitutive functions 7', k& and P":
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We prescribe the remaining constitutive conditions for P¥ and k so that the
evolution equation (1) has an equilibrium solution (pg, 0, eg), where py and eg
are constant functions, and we can determine them from the initial conditions.
The functions (e, u, p) are defined in the space region U C ®? and in time R
and satisfy the system of partial differential equations (1). In order to apply
Liapunov’s method, we treat the space variable and the time variable in different
ways.

Let H be the Hilbert space of Rt x R* x R valued square integrable functions
defined in U C B® thatis H:= L£3(U, R xR*xR*). Then D:= C*(U, R xR% x
JR"'), the set of twice continously differentiable Bt x B3 x Bt valued functions
defined in U is a dense linear subspace of H. We suppose that (e, u, p) : U xR —




BT x B3 x RY is twice continously differentiable. Thus for all ¢t € BT, ¢(t): =
(e;u,p)(-,t) € D, i. e. we consider the function ¢ : RY — Dt + o(t). Then
we can write the evolution equation (1) in the form

% (1) = Fe(1)), ()

where F': D — H.
Now we assume the non-specified conditions assure that this differential
equation generates a dynamical system in H [8].

Theorem 2.1 The equilibrium solution of the evolution equation (1) (or (5))
1s asymptotically stable with the conditions above.

Proof: We introduce some notations Tp: = T'(eg, po) and pg: = p(eq, po)-
Now we will proof, that the function

u2
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is a Liapunov function of the equilibrium solution of the evolution equation (1)
(or (5)) and this function satisfy the conditions of the theorem in [8, p157]
(1) L(p) — L{po) > f(d(, ¢0)), where d denotes the £2 norm in L2(U, R x
B? x BRY) and f: BT — RY f(0) = 0 strictly monoton decreasing function.
To check this inequality we differentiate L:

DL(¢):(fUp< = F) Vi [y pudV; fU(§+6_T05_NO+Z;—7;>dV>.

We can see, that DL(gq), the derivative of L at the equilibrium is zero, moreover
its second derivative at the equilibrium is non-degenerate and strictly positive,
then we verify, that the function L has a strict relative minimum at the equi-
librium [11, p82].

(1) L{¢) < —g(d(p, ¥0)), where g : R — R, ¢(0) = 0 strictly monoton de-
creasing like f. With the help of the evolution equation we can calculate L(y)
”the derivative of L along the motion”.

L(p) = /U (% <p2£> + %(/)e) - To%(ﬁé‘) - uog—f> av

After some transformations we get the final result:

Liy) = —ng ((—pﬂo—pTos+pe+%>U+P-U+ (1—%> k> dA(F
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Here the first integral vanishes because of the boundary conditions, and the
second integral is a negative quantity because of the Clausius-Duhem inequality



(4). Thus L(gp) < 0 and zero only, if ¢ = ¢g. Therefore the equilibrium state
of our closed continuum thermodynamical system described by the evolution
equations (1) is asymptotically stable. m

Remark: If we modify our boundary conditions, that the temperature and/or
the pressure (77) are uniform at the boundary, then the equilibrium of this
modified system will be asymptotically stable as we can see with the help of the
same Liapunov function.

3 Stability and the second law in extended irre-
versible thermodynamics (wave approach of
thermodynamics)

In the wave approach of thermodynamics [12], or in extended irreversible ther-
modynamics [13,14], which are essentialy equivalent theories, the second law is
considered as a natural generalization of the second law in classical irreversible
thermodynamics. These theories require that the production of the extended,
generalized entropy will be positive. However, this requirement is based only
on the analogy with the classical case. In addition there is some uncertainty in
this respect, because Woods have the opinion that we should require only the
positivity of the classical part of the entropy production [15].

If we take into account the second law in the form given above, we should
require the asymptotic stability of the equilibrium of a differential equation de-
scribing a closed extended irreversible thermodynamical system. Furthermore,
we expect that the generalized entropy will be closely connected to a Liapunov
function ensuring stability.

In this chapter we generalize the evolution equation (1) and the constitutive
and state functions /equations/, that they will be the extended /wave/ equiva-
lent of the classical continuum physical system described in the chapters above,
and we perform the stability investigations as previously.

Now we suppose that the equation (1) is formally valid, but with a different
interpretation. We suppose, that our independent variables are (e, u, p, k, PY),
thus we take current densities of the balance equations, in this particular case the
heat current and the viscous part of the pressure tensor, as independent variables
for which differential equations must be given as well. Usually the viscous part
of the pressure tensor is split into two parts according to thermodynamical
considerations

o
P'U — p'U+ P'U
o
where p¥ = Tr(PV), and P'= PY — p¥ . Let us suppose, that the evolution
o
equation of ¢, = (k,p", P¥) : U xR — R? x B x R® is given by:
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According to the standard procedure, the particular form of F (which is a
differential operator actually, like F') comes from the entropy production, intro-
ducing some thermodynamical forces and currents, and for example supposing a
linear relationship between them. Now we do not specify the particular form of
F, but this notation indicates that we will interpret it as a part of the evolution

o
equation of our independent variables (e, u, p, k, p¥, P?):
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(9)
In this case we left the realm of local equilibrium because of our new dy-
namical variables, so we modify the state functions (equations) as follows.
We introduce a non-equilibrium entropy function as § : BT x BT x B?® x
Rt x R - IR,

o k2 v2 PY PV
(6)p)]€)pv)Pv)l—>5(6)p)—mlE—mQPQ _mST) (10)

where s is the entropy function in the local equilibrium, my, ms, ms are positive
constants. We suppose the same boundary conditions as in the chapter 1, thus
our system 1s closed, which means that the normal components of k and u on the
boundary of U are zero. The remainig, not specified boundary conditions make
our problem definit together with the initial conditions. Moreover we prescribe,
that the constitutive functions and the bouundary conditions are given so, that
there is an equilibrium of the system in the form (¢, ¢ey). = (€0, 0, po,0,0,0)
and the appropriate solutions of our differential equation constitute a dynam-
ical system. Furthermore we modify the definition of the chemical potential
according to our new entropy function.

0 0
ple, pyk,p', P'):=e—"T(e,p)s(e, p, k,p*, P') + ple, p)/p.

Now we are ready to formulate the stability theorem in this special extended
irreversible thermodynamical system.

Theorem 3.1 The equilibrium solution (e,0, py,0,0,0) of the evolution equa-
tion (9) is asymptotically stable, if

).



(i) my > 0, ma >0, mg > 0, and for the function s(e,p) the inequalities
(3) are valid.
(i)
1 /VT- -k Y o .
/{](f( T +VOU:P>+(m1pk‘) mapp?, m3va>-F>dV20.

(1)

and the equality is valid only for the equilibrium values of the variables.

Proof: The proof is based on the fact that the function

R 0 w2 0
L(e;u)p)k)pv)Pv) :/ (pT =+ pe —Topf;(e)p)k)pv)Pv) —p/io> dv (12)
U

is a a Liapunov function of the equilibrium solution of the evolution equation
(9) and this function satisfies the conditions of [11, p82].

Remarks:

1. We have got that we should require the positivity of the whole entropy
production, and it is evident that the positivity of the classical part is not
enough for the required stability.

2. Here the considered extended irreversible thermodynamical system is
quite simple. It is easy to consider more general modells, for example additional
terms in the entropy current. The essence of the treatment and the Liapunov
function itself does not change.

3. Sometimes equations (8) are considered as constitutive functions.

4 Discussion

1. We can compare this interpretation of the second law with the interpretation
of Glansdorff and Prigogine and we can see that

- 1t relates to nonlinear stability, not to the linearised equations, and

- 1t propose an other Liapunov function than Glansdorft and Prigogine.

They investigate the stability of some steady states too. It would be inter-
esting to investigate the role of this Liapunov function in the stability of steady
states as well.

2. The stability structure of thermodynamics (the way of construction of
Liapunov functions) can give some clue for construction Liapunov functions in
purely mathematical problems as well.

3. The Liapunov function L of this paper is the same for some closed classical
irreversible thermodynamical systems, for some open classical thermodynamical
systems and closely related to the classical one for some extended thermody-
namical systems. This universal property of L. makes clear the way and the
direction of the generalization of the given theorems for more general systems,
too.



4. We usually think that the thermodynamical stability conditions (the
Gibbs type stability for homogeneous systems) give only a first look of the
dynamical stability of an irreversible thermodynamical system and we should use
a ’dynamical’ stability investigation (linearization and spectral analisys) to get
applicable results. Now this paper suggest a dynamical and thermodynamical
method for the stability investigations.

5. The solutions of the differential equations generally do not constitute a
dynamical system, there are important non continuous solutions (for example
shock waves).
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