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ABSTRACT. The interpretation of the Second Law is a central problem of every
theory of thermodynamics. Here the possibilities of a dynamical interpretation
are investigated in case of homogeneous bodies. Now the Second Law appears
as a condition of the asymptotic stability.

1. INTRODUCTION

Classical phenomenological thermodynamics is a theory with a contradiction
in its name. This 1s a theory of physics without any dynamics, we cannot give
the time development of the thermodynamical state parameters, there are no true
thermodynamical processes. With this property classical phenomenological ther-
modynamics is unlike any other physical theory and this fact is well reflected in
some other widely used names of the theory: ’equilibrium thermodynamics’, "ther-
mostatics’ [1, 2]. However the thermodynamical parameters of the bodies in the
reality changes in time, for example if we put a glass of water from the room into a
refrigerator it get cool and in a lot of cases only little inhomogeneities accompanies
the process. Furthermore the continuous details of the cooling are not important,
we would need only the (average) temperature of the water as a function of time.
"Thermostatics’ cannot give answer such questions, and the need for a dynamical
model was the origin of 'non-equilibrium’ or ’irreversible’ thermodynamics. Now
we have a well developed theory of continuous matter but only a static theory for
homogeneous media. Let us imagine this paradox situation in mechanics: we have
a well developed continuum mechanics but there is no dynamics of masspoints only
statics. How strange and hard would be the understanding of such a theory! What
kind of concepts we would need to explain a process! This is the main purpose
of a real thermo-dynamics beyond the practical importance: to give a simple and
easy understanding of the basic theoretical concepts of thermodynamics first of all
the concept of entropy and the Second Law. The formulation and the content of
these fundamental principles of physics should be in agreement with the previous
formulations and should reflect our physical expectations.

This paper deals with the possibilities of such a dynamical description. Therefore
we cannot use the name ’equilibrium thermodynamics’ and for the sake of distinc-
tion we will call the realm of reality which is aimed to describe by the ’equilibrium’
or ’classical’ phenomenological theories as thermodynamics of homogeneous bodies
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according to Landau [3]. We find that in case of a true dynamical description a
natural formulation of the content of the Second Law is the requirement of the
asymptotic stability of some thermodynamic processes, especially the equilibrium
of some thermodynamical systems.

In the next chapters we restrict ourselves to the traditional description of dy-
namics like other theories of physics: we will give differential equations to describe
thermodynamical processes. Of course there are other examples on the description
of the dynamics too [4, 5]. Tt is quite straightforward to interpret the first law, or
more properly the Gibbs relation as a differential equation in time like Landau or
Truesdell and Bharatcha [3, 6]. However this results only one differential equation,
so gives a dynamical description only for systems with one state variable. We need
more equations, a whole dynamical law.

Two theories suggest enough differential equations to describe the time devel-
opment: the non-equilibrium or irreversible thermodynamics for ’discrete systems’
(which is the same as homogeneous bodies in our case) [7] and ordinary thermo-
dynamics of Matolcsi [8] . The crucial question, like any other thermodynamical
theory, the formulation of the Second Law. In case of differential equations the con-
tent of the Second Law is the asymptotic stability of the equilibrium of some special
thermodynamical systems and a natural device of the investigation of the asymp-
totic stability is the first and second theorem of Liapunov. In the next chapters of
this paper we will investigate these theories to give the relations of the concepts of
stability theory and thermodynamics. For example we will give Liapunov functions
for these systems, and we can see what is the relation of this Liapunov function,
and the entropy of the system.

2. ENTROPY AS A LIAPUNOV FUNCTION

Some formulations of the Second Law are directly connected to some properties
and the existence of the entropy function. If we accept that this function exists
(which is a crucial question of the problem set called Second Law) then we usually
suppose that

— entropy is a concave function of its variables,

— along thermodynamical processes of some definite systems the entropy
’grows’; it 1s an increasing function in time, as the system tend to equi-
librium.

These two statements formulate independent properties of the entropy, and in the
different phenomenological and statistical theories of thermodynamics sometimes
the first property, sometimes the second and sometimes both together are accepted
and postulated as the Second Law of thermodynamics.

However, the second statement is problematic without a dynamical theory, be-
cause the second statement tell us something on the dynamics of the system: the
processes are determined on such a way, that there is a function with the properties
above. It follows, that almost all of the statistical and phenomenological theories of
thermodynamics for homogeneous bodies are unable to give a correct postulation
for the second statement: dynamics is out of the realm of these theories.

An other important remark that these properties of the entropy function resem-
bles ourselves to the properties of a Liapunov function in the second method of
Liapunov [9]. This fact was realized and applied long ago for continuum theories
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[10], and for statistical theories as well [11]. However, the basic concepts of thermo-
dynamics are originated in the phenomenological theory for homogeneous bodies.
This is the most simple theory of thermodynamics for the most simple practical
situations: any thermodynamical theory should be in agreement with it. Thus if we
develop a continuum or statistical theory based on that kind of concept of the Sec-
ond Law then we should be able to give a corresponding phenomenological theory
for homogeneous bodies as well. Moreover, to deal with more complex theories can
result inadequate understanding of the structure of the theory: eg. Glansdorff and
Prigogine use a Liapunov function (in the so called ’general evolution criteria’) only
for the linearized continuum equations and does not realize that 1t is a Liapunov
function for the whole nonlinear set of equations of some systems of continuum
physics as well [12].

The concept of Liapunov function is meaningful in the light of a dynamical
law, possibly a differential equation. Speaking on Liapunov functions without a
differential equation, without a correct formulation of the problem is no more than
the expression of a need of that kind of mathematical background: an intermediate
state along the development of the theory. In the following chapters we investigate
the possibility of that kind of interpretation of the Second Law in the theory of
’thermostatics’ or more properly: thermodynamics of homogeneous bodies.

3. BACKGROUND FROM THERMOSTATICS

Let us investigate a simple example system, the ’charge probe’ of thermody-
namics: a cylinder filled with some gas and closed by a piston. We suppose that
this system can be characterized by four thermodynamical variable: the e internal
energy, v specific volume, T' temperature and p pressure. Let us suppose that the
system is thermally and mechanically connected to its environment. The tempera-
ture and the pressure of the environment is given by T, and p,.

The material inside the cylinder, the gas is given by two state functions, the
temperature and the pressure, as functions of the internal energy and the specific
volume:

T =T(e,v), p = ple,v).
Let us suppose, that these state functions are given in such a way, that there is
an entropy function s with the following properties:

ds(e,v) 1 Js(e,v) _ ple,v)
de  T(e,v)’ v T(e,v)
In this case the usual formulation of the first law or Gibbs relation and the
corresponding differential equation is the following [3, 6]:

(3.1) de = q—pdV <= ¢é=q—pv,

where de 1s the differential of the internal energy and ¢ is the heating which is equal
T'ds in our case, when the entropy function exist.

Remark 3.1. Sometimes the different forms of the First Law are distinguished from
the Gibbs relation, but from our point of view it is not important, we can call it
anyhow, the analogy is clear. A far more detailed treatment is given for example

in [6, 8]
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This is one equation for two variable, even in this simple case we would need an
other one to pose a proper problem to determine the time development. However
we do not find a clue in thermostatics for the additional equation, therefore we can
see 1t in other theories.

4. ONSAGERIAN THERMODYNAMICS

The aim at the foundation and development of non-equilibrium thermodynam-
ics, as it 1s reflected in its name, was to eliminate the contradiction mentioned
in the introduction: to construct a thermodynamical theory which would give the
time development of thermodynamical systems. This aim was fulfilled only par-
tially, now we have a reasonable dynamical phenomenological theory of continuous
systems, but for discrete systems, for homogeneous bodies the view suggested by
non-equilibrium thermodynamics is ambiguous. Let us see the suggestions of On-
sagerian irreversible thermodynamics for our example system.

The starting point of the construction of dynamical equations is the the entropy
production [7, 10, 13]. We suppose that the entropy production o for two variables
is

(41) Os — 021X1 + O[IQXQ Z 0)

where «q,as are alpha type thermodynamical variables so their derivatives are
the thermodynamical currents and X7, X» are the corresponding thermodynamical
forces. It is supposed to a be a positive definite quadratic form of the forces and the
currents, according to our second assumption on the Second Law. What are the
forces and the currents in our specific case? The most straightforward answer is,
that the « variables are the extensive quantities and the currents are the differences
of the corresponding entropical intensive parameters:

o] = €, Qo = V]

1 1 P Pa
Xi=|l=—-—— Xo=|=—=—].
! (T Ta>’ 2 (T Ta>

According to the supposed form of the entropy production (4.1) we can give the
linear laws, as follows

(12 (S)=(m)(

Now the linear phenomenological coefficients lyg, {p1, l10,[11 are constants. This
equation give us the dynamical law for the system considered. Let us investigate
the stability properties of the equilibrium of these differential equations.

The equilibrium is given by the constant function (eg, vg), where (eg, vg) is de-
fined by the algebraic equations:

> = Fle,v).

R 3l
S~

Ta = T(eo, ’Uo), Pa = p(eo, ,UO)‘

This equilibrium is asymptotically stable as we can see after the linearization of
equation (4.2). The linearization of F(e,v) around the equilibrium in (4.2) results

DF(eg,vp) - (e —eq,v—vg) = L - Dzs(eo,vo) - (e —eg, v — vg).
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The matrix of the linear phenomenological coefficient is positive definite because
the entropy production (4.1) is positive and the matrix of the second derivative of
the entropy is negative definite according to the concave property of the entropy
function. Therefore the whole matrix is negative definite, the real parts of its
eigenvalues are negative. Then the equilibrium of (4.2) is asymptotically stable
according to the first theorem of Liapunov [9].

On the other hand a bit stronger statement is also valid. Let us investigate the
next function

(4.3) L(e,v) = Tys(e,v) — e — pav + Ty pto,

where pg = eg + pavo — Ty so 1s the chemical potential of the system in equilibrium.
Tt is easy to prove that L is a Liapunov function of the equilibrium of (4.2):
— (1) L is negative definite, because L(eg,vg) = 0, DL(eg,v9) = 0 and
D?L(e,v) = D?s(e,v),
— (ii) the derivative of L along the differential equation (4.2) can be written
as
DY L(e,v) = DL(e,v) - F(e,v) = Tyos;

which is the entropy production (4.1) times the equilibrium temperature.
05 18 a positive quantity according to our assumptions.

Thus the equilibrium of (4.2) is asymptotically stable according to the second
theorem of Liapunov [9].

The stability properties seems to match to our suggested interpretation of the
Second Law, but the presentation above suffers from some ambiguities:

— The first step in constructing the differential equations was the form of the
entropy production. However, I did not mention the corresponding entropy
function. for example de Groot and Mazur [7] introduce it according to
some continuum analogies.

— The only fix point contributed to the dynamics from the theory of thermo-
statics is the form of the first law (3.1). The first equation of (4.2) seems
to contradict to it.

— From a physical point of view our simple system (a gas closed in the piston)
can oscillate mechanically. Our Onsagerian dynamical law does not make
it possible.

— Neither the suggested form of the entropy production nor the dynamical
law does not show an analogy to the corresponding equations of continuum
physics: the momentum and the energy balance and the Clausius-Duhem
inequality.

5. CONTINUUM ANALOGIES: EXTENDED ORDINARY THERMODYNAMICS

Let us consider our simple system again. We know, that there is an other
(phenomenological) possibility to give a quantitative description. The piston, closed
by a cylinder and some gas inside has a continuum model, too. In this case we do
not characterize the system with a uniform temperature and pressure, but we give
the distribution of the corresponding quantities. This model is far more difficult
than the homogeneous one. The two models should correspond to each other, at
least some clear analogies should exist between them.
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The structure of the existing continuum theory suggests some idea for the dy-
namical law, moreover there are more than one solutions [8]. Here our starting
points are the balance equations of the extensive quantities of the corresponding
system except the entropy balance which gives an additional, derived connection.

Now the mass density and the density of the specific internal energy character-
izes the system therefore the corresponding continuum equations are the balance
equations of the mass, momentum and the energy, as follows:

(5.1) 6 = —oV -u,
(5.2) o = —V-P+of,
(5.3) ¢ = —-V-J,+PVou,.

Here ¢ is the mass density, e is the specific internal energy, J, is the heat current,
P is the pressure tensor, u is the velocity of the continuum and f'is the force density.
The corresponding entropy production is the following [7, 13]:

P Vou
—— >0,
T i
where PV 1s the viscous part of the pressure. It supposed to be a positive quantity

and forms the Clausius-Duhem inequality in our case. The continuum balance
equations suggest the following homogeneous ones:

1
54 ==J,-V
( ) o q T

€ = q—pv,
v = f
where ¢ is the heating, f is called forcing and they are functions of the intensive

variables of the body and the environment and they vanish at the equilibrium. For
example if «, § are constant numbers:

e = oT—"Ty)—po,
vo= 5(P—Pa)-

Let us observe that the analogy of the momentum balance is a second order
equation, so we can introduce naturally the u := v volume velocity. Furthermore
we remark, that it is more than one possibility to introduce the second equation,
for example we can investigate the possibility of a first order one [8]. This would
satisfy all of our enumerated requirements at the end of the section 4 except the
third, a first order equation would be a model of systems that cannot oscillate. In
the next chapter we will clarify the exact meaning of the functions introduced and
investigate the stability properties of this model. According to the traditions of
thermodynamics it will be given in a more axiomatic way.

6. STABILITY: EXTENDED ORDINARY THERMODYNAMICS

A1 Requirements on the thermodynamical body
(i) Thermodynamical body

Definition 6.1. A simple thermodynamical body is given by its state functions
(equations):

(T,[)) RYxRY xR — RT xRT; (e,v,u) — (T(e, v, u), ple, v, u))
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Moreover we can split the pressure and the temperature into an ’equilibrium’
and ’irreversible’ part:

ple,v,u) = ple,v)+ple,v,u), where ple,v,0)=0,
T(e,v,u) = T(e,v)+T(e,v,u), where T(e,v,O):O.

Here u denotes the volume velocity (A2), p, T are the ’equilibrium’ values and
P, T are the ’irreversible’ parts. The reason of the nomination must be clear from
the definition.

(i1) The body is entropical. The vector field (1/T, p/T)(e,v) is conservative. In
this case there exist a potential of this field, the entropy function s : BT x BT —
R, (e,v)+ s(e,v), with the properties:

ds 1 ) ﬁ_g
g~ TV g = ey

)

(i11) Concave entropy. We suppose that the entropy function is concave:

Ip
Remark 6.1. We remark, that the second property, the existence of the entropy
function is not necessary to the stability of the equilibrium of thermodynamical
bodies.
A2 Dynamical law
We suppose the validity of the next system of differential equations for our
variables:

é = q(T)Ta)ﬁ)pa)U)—ﬁU)
(6.1) Vo= U,
u = f(T)Ta)i))pa)u)'

Here the functions ¢ and f are called heating and forcing and are the functions of
the intensive variables of the body 7', p and its environment Ty, p,, and the volume
velocity u of the body.

A3 Equilibrium

We suppose that the constitutive functions ¢ and f are given in such a way that
there exist an equilibrium of the differential equation (6.2):

q(Ta;Ta)pa)pa)O)ZO; p(Ta;Ta)pa)pa)O)ZO

In this case the equilibrium is not a basic concept of the theory: it has a clear
definition concerning the differential equation (6.2), like the mechanical equilib-
rium: a specific solution of the differential equation when the state parameters do
not change. According to these conditions the equilibrium of our dynamical law
(eo, vo,0) is characterized by the following algebraic equations, like in the section
4:

T(eg,vo) = Ty, p(eo, v0) = pa

A4 Positive mass
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(6.2) F(T, T, By pas w)(p — pa) > 0.

This requirement has a pure mechanical counterpart, which is rooted in the
mechanical definition of the pressure and force. Therefore it has a clear physical
meaning and it is necessary to the stability of the equilibrium of our system.

A5 Second Law

In our case the Second Law has the following form:

pu 11
. = g===)>
(6-3) T q(Ta T>—0’

The inequality above is clearly analogous with the Clausius-Duhem (5.4) inequal-
ity of continuum physics.

The thermodynamical system satisfying the properties A1-Ab is called extended
ordinary thermodynamical system.

A bit specialization of our system helps to formulate the corresponding stability
theorem in a very elegant form. The following definition contains the required
specialization:

Definition 6.2. A thermodynamical system is classical if its forcing has the fol-
lowing form:

f(T)Ta)ﬁ) Pa, U) = ’Y(ﬁ - Pa);

where v € R is a positive number according to A4.

This definition is straightforward if we consider the mechanical definition of the
pressure.

Now every condition is written, we are ready to characterize the stability prop-
erties of the system:

Theorem 6.1. The equilibrium of a classical extended ordinary thermodynamical
system 1s asymptotically stable.

Proof: We will prove that the following function is a Liapunov function of the
equilibrium of the system:

u2

L(e,v,u) = Tys(e,v) — e — pav — 3
~

+ po,

where pg = eg + pavo — Tus(eg, vo) is the chemical potential of the body in equi-
librium. According to the second theorem of Liapunov we should see, that the
corresponding function has a maximum and increasing along the solutions of the
differential equation (6.2).

— Maximum: The first derivative of L 1s:

T, T,
DI(e,v,u) = <?—1) Tp—pa,—g> .
Yy
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Tt is easy to check that DIL(eg,vg,0) = 0. Then the concavity of the
entropy function that is the inequalities (6.1) and A4 require that the
second derivative of L is negative definite:

TaD?s(e,v) 0 >
0 1

D*L{e,v,u) = (

5

— Increasing L: The derivative of L along the differential equation 6.2 is
positive according to the Second Law A5:

Js . e Js . pa . i
DoL S A (= T S
(e v, ) (866 r, o ov T, 'y’la>

I
&3
TN
o~
[
|
=3
S
p—
TN
M|
|
-
N
+
e
TN
N
SIF
N
|
o~
=3
|
S
)
S—’
S
N

Tt is worth a paragraph the physical meaning of the Liapunov function (6). The
negative first three terms form the maximum available work of our open system:

Winaz(e,v) = € + pav — Tys(e, v).

The fourth term containing the volume velocity u gives the clear possibility to
define a 'non-equilibrium entropy’:

. u?
S(e,v,u) = s(e,v) — T,
like the the modern thermodynamical theories containing internal dynamical vari-
ables (eg. extended irreversible thermodynamics). With this notation our Liapunov
function is nothing more than the negative maximum available work in this general
sense

L(e) v, U) = Tag(e) v, U) — € = Pav + Ho = — ma.’L‘(e) v, U) + Ho-
The last term pg translates the maximum to the equilibrium of the system, it has
no role in the stability.

You can see clearly the most important backward of the 'non-equilibrium en-
tropy’ as well: it 1s not a state function, the non-equilibrium entropy’ depends on
the environment (7}), and the interaction (). This property is essentially valid for
the continuum theories as well and questions the possibility of the introduction of
such an entropy concept at all.

7. CARNOT-CLAUSIUS THEOREM

In this chapter we show some correspondence between the continuum concepts
and the homogeneous ones. In this respect a special form of the Second Law, the
Carnot-Clausius theorem gives the best example [7, 10, 13]. This is essentially a
convenient form of the entropy balance for homogeneous systems. In this equation
the total change of the entropy for a homogeneous thermodynamical system is
divided into two parts:

ds = d.s + d;s,
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where d,s is the 'reversible part’ of the entropy change, the entropy from the envi-
ronment, and d;s is the ’irreversible part’ of the entropy change due to the internal
irreversibilities. This later part is supposed to be a positive quantity. With contin-
uum terminology we guess that d.s is like the flow part of the balance and d;s is
the source of the entropy.

This has a more transparent particular form in our case, with the help of the
dynamical law we can derive the explicit form of the entropy change, the time
derivative of the entropy function:

(7.1) 5'(6)0):?(;4_@@: _ = p g pu  pu_q pu
€

T T T ' T T T

The last form suggest an interpretation of the Carnot-Clausius theorem for our
special system: ¢/T is the 'reversible part’, and pu/T is the "irreversible part’ of the
entropy change. This later one is a positive quantity if we are a bit more rigorous
than A5, requiring the positivity of both terms. This strict analogy suggest us a
clear interpretation of the ambiguous concept ’quasystatic process’. It is said that
d;s 1s zero for such kind of processes, and strictly positive for irreversible ones.
Using our particular form we can say that this property is not the property of the
process but more properly the property of the thermodynamical body (however it
can depend on the speed of the processes of course [14]): if the pressure of the body
does not depend on the volume velocity p = 0 then the process (body ) *quasystatic’
in the other case ’irreversible’. Here we should remark, that according to our model
the 'quasystatic processes’ tend to the equilibrium as well, the asymptotic stability
fulfills in this case, too.

An other rearrangement at the end:

. q 1 1 pU
S Y S
T, q(Ta T> T =

This is the entropy balance clearly. We see, that the a positive source is the
requirement of A5. This form cannot be the counterpart of the Carnot-Clausius
theorem because the first term of the entropy production concerns to the entropy
change and not the internal irreversibilities.

8. CONCLUSIONS

In the preceding chapters we gave a frame of a new approach to the classical
thermodynamics where we considered real processes in time that are governed by a
system of ordinary differential equations. We required that the Second Law should
result the asymptotic stability of the equilibrium of thermodynamical systems and
investigated the conditions of such kind of stability for our simple example system.
Our results are in full agreement with the usual requirements on the thermodynam-
ical systems, and we have seen that several, independently required conditions will
give the expected stability properties. For entropical bodies (A1/ii) the concavity
of the entropy function and the homogeneous counterpart of the Clausius-Duhem
inequality played the key role.

Furthermore we investigated several possibilities to introduce a dynamics into
the theory and concluded that the old examples (classical, Onsagerian) does not
fulfill all of our requirements. Therefore a new dynamical law was suggested, which
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corresponds all of our expectations and gives a clear view on the classical equilibrium
theory.

As a final remark I call the attention to the application of these concepts to

some more difficult system. We can treat more coupled bodies in more than one
environment, phase transitions, the role of the reservoirs, etc...
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