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Abstract

The Governing Principle of Dissipative Processes (GPDP) is the most
widely applied variational principle in non-equilibrium thermodynamics.
It is not a usual ’hamiltonian type’ principle, therefore there are a lot
of misunderstandings and misconceptions regarding its applicability and
completeness. In this paper its structure and domain of applicability is
investigated and cleared up.

1 Introduction

Thermodynamics is a special area of physics where we find a lot of different
variational principles. The reason is that an investigation based on a mathemat-
ical theorem shows that the basic differential equations of (irreversible) thermo-
dynamics, the transport equations cannot be derived from a usual ’hamiltonian
type’ variational principle. Let us consider a differential equation. If there
exists a hamiltonian type variational principle whose Euler-Lagrange equation
is the differential equation, than we call that equation (and the corresponding
differential operator) potent. We call the equation non-potent if there exists no
such a principle. Several principles and methods were born to circumvent the
mentioned theorem, to construct variational principles for non-potent operators
using different techniques. We can distinguish four main groups:
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– The method of additional variables (or dual principles) introduces new
variables to make the corresponding operator potent.

– The method of integrating operator is a generalization of the method of
integrating multipliers. A special case of this trick is the method of least
squares.

– In the method of transformation of variables we introduce ’potentials’ like
the scalar and vector potential in the Maxwell equations.

– Using the method of modifications we modify the corresponding operator
or function space in an appropriate way to get a potent operator.

A more detailed treatment and a survey of the variational principles and
methods in thermodynamics is given in [1, 2, 3]. For the same non-potent equa-
tion (e.g. heat conduction equation) one can find and apply several variational
principles each based on a different method. Moreover after having grasped the
essence of the corresponding method one can easily construct different principles
for almost any differential (or integral or any other) equation.

Some principles mix different methods to solve the problem caused by differ-
ent non-potent terms of the equation. The Governing Principle of Dissipative
Processes (GPDP) is one of them. This principle exploits the special structure
of transport equations of irreversible thermodynamics; introduces the thermo-
dynamical currents as additional variables (here the additional variables have a
physical meaning!); has a Gaussian form resembling the method of least squares
and modifies the original function space.

In the following chapter we consider shortly the method of least squares and
the method of modifications for non-potent differential operators. In the third
one we treat the structure of the GPDP. The fourth chapter is dealing with
the special case of ’pure dissipative processes’. The last chapter contains some
discussion.

2 Methods of constructing variational principles
for non-potent operators

In the following a mapping (or a function) is called an operator, if its domain
and its range are spaces of functions. A mapping is called a functional, if its
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domain is a function space and its range a linear space of real (or complex)
numbers.

It was mentioned in the introduction that the basic theorem of the inverse
problem of calculus of variation results in a strict mathematical condition for
constructing a variational principle of a given (usually differential) operator.
This condition was known essentially by Helmholtz and was after him recon-
sidered and generalized by several authors (see Havas, Santilli and Tonti on
historical aspects [4, 5, 6]). A modern and general formulation and a proof that
it is a necessary and sufficient condition for the existence of a variational prin-
ciple is due to Vainberg [7]. This theorem can be considered as a (not simple)
generalization of the well known fact that a force field is conservative, if its curl
vanishes. This classical condition splits the group of equations (more properly
operators) into two groups:

1. potent operators for which a variational principle can be constructed in
this rigorous sense,

2. non-potent operators for which a variational principle does not exist in
this classical, ’hamiltonian’ sense.

Most of the differential equations of physics are non-potent, so the inverse prob-
lem of calculus of variation was a great challenge for physicists, which resulted in
a huge amount of methods for constructing variational principles for non-potent
operators or equations. Three of them will be treated in this chapter, because
they are incorporated in the GPDP.

The general notation for any differential or integral equation will be Θ̂(ϕ) = 0
where Θ̂ is an (integral or differential, linear or nonlinear) operator mapping
from the function space of ϕ functions to an other function space. The corre-
sponding spaces are usually normed. For the sake of simplicity we allways will
speak of Hilbert spaces. The corresponding scalar product will be denoted by
〈 , 〉. Some important aspects on the - not only mathematical - question of the
relation between normed and Hilbert spaces in the inverse problem of calculus
of variation is discussed in [1, 2].

2.1 The method of least squares

For equations with a bounded linear operator Â we can construct the variational
action functional
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Ŝ(ϕ) =
1
2
〈Âϕ, Âϕ〉.

This would be considered as a generalization of the method of least squares
for functions in Hilbert spaces. Formally we can derive that the corresponding
Euler-Lagrange equation is Â∗Âϕ = 0. Here ∗ denotes the adjoint of the oper-
ator. The solutions of this equation is a subset of the solutions of the equation
Âϕ = 0. However it is easy to see that the range of Â should be in the domain of
its adjoint. A detailed investigation and a proper generalization of this method
for every nonlinear operator (bounded or unbounded) is given by Tonti [6].

The two other methods used in the GPDP are usually treated together and
are sometimes referred as quasi-variational, or ‘restricted‘ principles [8, 9, 10].

2.2 Modified operators

By this method the operator Θ̂ is modified in such a way that the transformed
operator Θ̂m will be potent. The domain of the modified operator is the same
as for the original one. Of course, in this case variational potentials exist only
for the modified operator, not for the original one.

”Variational principles” coming from the method of modified operators are
usually believed to be valid in a more general sense than they really are. For
instance, the resulting Euler-Lagrange equations are transformed to get back
the original operator. Sometimes the method is interpreted as application of
a ”restriction” because the modification is usually a restriction of the original
operator, as it is shown in the following example. However, well applicable
numerical methods can be elaborated with the help of this procedure to solve
the original equation.

Example: The typical example is the stationary heat conduction equation
with a temperature-dependent heat conduction: Θ̂(T ) = ∇(λ(T )∇T ). This op-
erator is generally non-potent. The usual modification is the following Θ̂m(T ) =
∇(λ0∇T ). Here λ0 is a positive real number.

This trick was applied among others by Glansdorff and Prigogine and his
co-workers in the method of local potentials [11, 12].
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2.3 Modified function spaces

In this case the domain of the original operator is restricted, so that the origi-
nally non-potent operator becomes potent on the restricted domain. With other
words the operator is modified by restricting its domain (DomΘ̂m ⊂ DomΘ̂)
and not its ’shape’.

The modification of function spaces leads to well defined extremum problems
on an appropriate ’restricted’ function space for a differential equation. Thus
Finlayson is wrong declaring that this method is out of the framework of the
calculus of variation [9, p342-343]. Moreover, in case of usual initial-boundary
value problems this procedure can lead to well manageable numerical methods
for the original equation, too [12, 13].

In practice this method is applied most frequently to obtain a variational
principle for differential equations containing first order time derivatives. A
more detailed mathematical treatment of this special case can be found in the
Appendix. In non-equilibrium thermodynamics it is used in the method of local
potentials [11, 12] or in different forms of the Gyarmati principle [14, 15].

Remark: If we find the hint: ”the time derivative must be held fixed during
the variation”, then a modified function space is introduced for the variation.

3 The GPDP

The Governing Principle of Dissipative Processes of Gyarmati [14, 15] is one
of the most widely applied variational principle of irreversible thermodynamics
[16]-[30]. It is not a hamiltonian variational principle and its structure initiated
several papers [15, 33] [9, p342-343][31, 32] with some misunderstandings and
misinterpretations among them. As far as physics is concerned, it is formulated
to incorporate the whole domain of non-equilibrium thermodynamics.

From the original form of the Gyarmati principle the basic equations of
the Onsager’s irreversible thermodynamics are derivable and its formulation
extensively exploits the special structure of these equations. To describe the
principle in a sufficiently general form I should expound the whole structure of
equations of continuum physics. Although completely objective, reference frame
independent form can be given [34, 35, 36] we restrict ourself to the usual frame
dependent description.

A continuum has a velocity field v ∈ C2(R× R3, R3). We will call balance
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equation of the specific physical quantity ’a’ an equation of the shape

%ȧ +∇ · Ja = σa. (1)

Here % is the mass density, Ja is the conductive current density of a, and σa

is its source density. The dot denotes the substantial time derivative (derivative
along a current line), ∇· is the trace of the derivative with respect ot the space
variables according to a given observer.

Let us suppose that the behavior of the continuum in a given frame of
reference can be described by ’n’ quantities. We should remark that these
quantities can be tensor valued functions of any order. The formal structure of
the (1) balance equations does not change in case of quantities ’a’ with different
orders, but the differentiation should be interpreted properly. For the sake of
simplicity we will suppose that ’a’ is an ’n’ component vector of scalar valued
functions, and it is defined on a given U ∈ R3 compact set (space), and on a
[t1, t2] interval of time. Thus the corresponding source and current density have
the same domain and an appropriate tensorial character.

For the mass density an independent balance equation is introduced, which
does not fit into the scheme of (1) and called equation of continuity:

%̇ + %∇ · v = 0, (2)

where v : [t1, t2] × U → R3 is the material velocity field of the continuum.
The mentioned reference frame independent description, where the functions
representing the physical quantities are defined in a space-time model, would
enable a unified treatment of the balance equations, and a clearer insight into
their structure, but it would require to define some more concepts which is out
of the frame of this paper.

With these definitions (1) is not a differential equation that we could solve.
We need relations which are called material functions and which contain
different physical assumptions on the structure of the material. Let our basic
variables be the components of the n component vector valued function Γ. Its
components usually represent different thermostatically intensive or extensive
physical quantities. We give the material functions in the following forms

σ : Rn → Rn; Γ 7→ σ(Γ), (3)

a : Rn → Rn; Γ 7→ a(Γ), (4)

J : Rn ×
(
Rn ⊗ R3

)
→ Rn ⊗ R3; (Γ,∇Γ) 7→ J(Γ,∇Γ) = L(Γ) · ∇Γ, (5)
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where L : Rn →
(
Rn ⊗ R3

)
⊗

(
Rn ⊗ R3

)
,Γ 7→ L(Γ) is a symmetric non-

degenerate matrix (in a given reference frame) which is called conductivity

matrix. Formula (4) is called as state function (state equation); (5) is the
constitutive function (constitutive equation).

This model of a continuum is quite a restricted one; here the main assump-
tions are

– local equilibrium, in the sense that we assumed that the traditional equilib-
rium physical quantities are sufficient for the description of the continuum
also in non-equilibrium, and the state functions known from thermostatics
describe the relationships among them;

– the constitutive functions are of the shape (5), the thermodynamic forces
have a gradient form (∇Γ), and σ depends only on the variables deter-
mined in (3);

– Onsager’s reciprocity relations.

These assumptions can be weakened, the validity of the GPDP can be ex-
tended to more general continuum models:

– the assumption of the local equilibrium is not necessary [37];

– there are several extensions of the principle to different non-linear consti-
tutive equations [14, 38, 39, 40, 41];

– there are efforts to extend the validity of the principle for Casimir type
reciprocity relations, i. e. if the conductivity matrix has antisymmetric
parts [40, 41, 42].

These extensions would make our treatment unnecessarily complicated. Here
we want to investigate the basic structure of the principle; that is why we restrict
ourself to the generality of the original formulation.

If the material functions (3) and (4) are substituted into the balance (1) we
can get the quasi-balance equation:

%ȧ(Γ) +∇ · J = σ(Γ). (6)

Here the independent variables are the components of the basic variable Γ
and the current density J.
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If the constitutive function (5) is substituted into the quasi-balance (6) then
we have the so called transport equation:

%ȧ(Γ) +∇ · (L(Γ) · ∇Γ) = σ(Γ) (7)

The transport equation is the dynamical equation of the continuum in the
sense that together with the continuity equation (2) it is a well defined system
of partial differential equations (as many variable as many function), that we
can solve with given boundary and initial conditions and the solution result in
the time and space development of the fields of the continuum.

The universal form of the Gyarmati principle provides a procedure to con-
struct a variational potential for the (7) transport equation. It is well known
and easy to check, that the operator of the equation (7) is non-potent, because
the conductivity matrix depends on Γ and the first term is a time derivative
of first order. Let us see how we can circumvent the usual conditions of the
existence of a variational principle in the GPDP.

In GPDP the time derivatives are varied independently (thus according to
the Appendix the function space is restricted to X3(U, g), the ’time parametric
form’ of the original one). Therefore the method of modified function spaces is
applied. On the other hand the function space is enlarged by using additional
variables to eliminate the problem that the conductivity matrix depends on Γ,
and special subsidiary conditions are used to incorporate the source term to the
variational principle.

The variational potential of Gyarmati, the ’action’ functional of the principle
can be written in its Gaussian form proposed by Nýıri [40, 41]:

S(Γ,J) = −
∫

U

1
2
(J− L(Γ) · ∇Γ) · (L−1(Γ) · J−∇Γ)dV. (8)

Here we are looking for the minimum of S on the restricted function space of
the currents J̃(t) and independent variables ˜Γ(t), where ( ˜Γ(t), J̃(t)) ⊂ X3(U, g)×
(X3(U, g)⊗X3(U, g)), using (6) as a subsidiary condition. In the following the
(Γ,J functions and its ’t’ parametric forms (Γ̃(t), J̃(t)) are denoted by the same
letter according to the usual denotation.

It is suitable to put down the original form of the principle for further dis-
cussion:

S(Γ,J) =
∫

U

(σs(Γ,J)− Φ(Γ,J)−Ψ(Γ,J)) dV, (9)
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where σs(Γ,J) = J ·∇Γ is the entropy production, Φ(Γ,J) = 1
2J ·L−1(Γ) ·J

and Ψ(Γ,J) = 1
2∇Γ · L(Γ) · ∇Γ are the so-called dissipation potentials.

The derivation of the transport and constitutive equations, the application
of the subsidiary conditions is usually executed in a quite special way [14, 15, 16]
as follows.

First of all the Euler-Lagrange equations of the variational potential (9)
or (8) are constructed (on appropriate restricted function space) without the
subsidiary conditions. The variation with respect to J results that:

L−1(Γ) · J−∇Γ = 0. (10)

The variation with respect ot Γ is:

∇ · [J− L(Γ) · ∇Γ] +
1
2
L′(Γ)

[
L−1(Γ)J +∇ · Γ

]
·
[
L−1(Γ)J−∇Γ

]
= 0 (11)

Then we substitute the t-parametric quasi-balance equations into the first
term of the left hand side of (11). The second term vanishes if we use equation
(10). This latter fact is called the subsidiary theorem of Gyarmati [14]. In
this way the transport equations (7) follow from (11) (of course in the narrower
X3(U, g) function space!) and (10) is equivalent to the constitutive equations
(5). The derivation of the constitutive and transport equations finished.

Let us examine this procedure a bit more closely. First of all we observe that
(10) and (11) are not independent equations, since the solutions of (10) are the
solutions of (11). Moreover, we know that the variational potential (9) has an
extremum at the subsidiary condition (6). Now several questions arise. Why can
be regarded (10) and (11) as independent equations? Why do not to apply the
usual Lagrange multiplier method as usual in constrained extremum problems?
The answers to these questions are quite straightforward after our preparations.
First of all we must not confuse the concept of subsidiary condition with the
concept of a constraint. In our case the subsidiary condition is the t parametric
form of the quasi-balance equation. But the t parametric form of the ȧ time
derivative in (6) is independent from the t-parametric form of a, therefore it is
independent from the variables Γ and J. The differential equations (6) does not
determine a constraint since it does not prescribe an additional condition for
the original variables but gives the dependence of the new variable ȧ on the old
variables! That is why the GPDP is called a variational principle with subsidiary
condition, and not a variational principle with constraint. Let us recognize that
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after the application of the subsidiary codition (6), our final equations (10)
and (7) are independent becouse of the new variable. Furthermore, the usual
procedure of the derivation of the Euler-Lagrange equations is correct, although
the customary Lagrange multiplier method need not be applied, since we do
not want to get an extremum on a subset of the original function space: our
condition introduces a new variable. The ’time parametric’ modified function
space makes this simplified deduction of the Euler-Lagrange equations possible.

4 Purely dissipative systems

It is worth to mention the particular form of the Gyarmati principle valid for
purely dissipative systems. In this case we suppose that convective mechanical
motion does not occur, that is v = const., and we suppose that a and Γ represent
the n component vector of thermostatically extensive and intensive variables,
respectively. Therefore if s : Rn → R, a 7→ s(a) is the entropy function, then
the intensive variables Γ(a) = Ds(a) are determined by the derivatives. Of
course, in practise the situation is a bit more difficult. The usual intensive
variables are not given by a simple derivation of the entropy, we can get only
the so called entropic intensive variables. Remember, for example, that ∂s

∂u = 1
T

where u is the internal energy, T is the temperature. Because Gyarmati uses
the extensive parameter a as an independent variable his variational potential
can be transformed with the help of the entropy quasi-balance, which can be
written in the next form:

%ṡ(a) +∇ · Js = σ(γ,J) = %Γ(a) · ȧ +∇ · Js,

where Js is the entropy current density.
We can change the variables of (11) with the help of the entropic intensive

variables.

Ŝ(a,J) = Ŝ(Γ(a),J) =
∫

U

(σs(Γ(a),J)− Φ(Γ(a),J)−Ψ(Γ(a),J)) dV =

=
∫

U

(
%Γ(a)ȧ− 1

2
(
∇Γ(a) · L(Γ(a)) · ∇Γ(a) + J · L−1(Γ(a)) · J

))
dV +

+
∮

∂U

Js · dA.
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Here the entropy quasi-balance (4) and the definition of the dissipation po-
tentials are used. In this case σs is divided into two parts, and the Lagrange
density looses its quadratic character. As a result, Gyarmati’s supplementary
theorem looses its validity. Unfortunately, this fact implies the restriction of
the variational principle to transport equations with strictly linear constitutive
functions [14]. In this case J is not an independent variable anymore. Suppress-
ing unnecessary terms we get the force representation of the Gyarmati principle
[15], where the variational potential can be written as:

Sforce(a) =
∫

U

(
%Γ(a)ȧ− 1

2
∇Γ(a) · L · ∇Γ(a)

)
dV. (12)

Moreover, if we suppose that the quasi-balance equation considered does not
have a source term, then the variational principle is valid without any subsidiary
condition. This latter case is essentially equivalent with the principle of min-
imal entropy production (every function is time-parametric). In this case the
corresponding Euler-Lagrange equation is:

[%ȧ−∇ · (L · ∇Γ(a))] ·DΓ(a) = 0. (13)

Here DΓ(a) is the second derivative of the entropy, so it must be a symmetric
and negative definite function according to the basic principles of thermostatics.
Therefore (13) is equivalent to the appropriate restricted transport equation (7).

However, other independent variables can be used, too. For example, we
can keep the variable Γ, but in this case the Legendre transformed form of the
entropy function sL(Γ) = a · Γ − s(a) should be used to get the right result,
since in this case ṡL(Γ) = a(Γ) · Γ̇. The previous variational potential can be
modified as:

SLforce(Γ) =
∫

U

(
%a(Γ)Γ̇− 1

2
∇Γ · L · ∇Γ

)
dV (14)

and the Euler -Lagrange equation is as follows:

%
∂a(Γ)
∂Γ

Γ̇−∇ · (L · ∇Γ) = 0, (15)

so the transport equation is derived directly and in the more usual Γ-variables.
The variational potential (12) was used by Gyarmati [14]. The other vari-

ational potential (14) was proposed by Lambermont and Lebon [31, 43] and
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these authors also criticized the validity of (12). However, after the previous
paragraphs it can be seen that although the Legendre transformed form is really
more comfortable it does not touch the validity of the original form and it is
doubtful that the proposal of Lambermont and Lebon can be accepted as an
independent variational principle. Furthermore the authors in the paper men-
tioned above also criticize the universal form of Gyarmati’s principle. Here, it
seems to me that they do not distinguish sharply the balance and transport
equations so they misunderstand the role and the usage of the restrictions and
subsidiary conditions in the principle.

It is worth mentioning that both forms of Gyarmati’s principle valid for
purely dissipative systems are in a close connection with the principle of minimal
entropy production as far as of the application of the restriction of the variation
to the time derivatives is concerned. The strength of Gyarmati’s principle is in
its applicability to quasilinear transport equations.

5 Remarks

We have seen what kind of techniques are used in the Governing Principle of
Dissipative Processes to avoid the non-hamiltonian, non-potent character of the
transport equations of classical irreversible thermodynamics. I hope that this
investigation, the distinction of the different methods, make the right inter-
pretation, the appropriate application and the generalization of the principle
easier.

6 Appendix

Let A, B and C be arbitrary sets, a ∈ A, b ∈ B and denote the functions
mapping the elements of B into C by Fun(B,C).

Definition 6.1 The function f̃ is called the a-parametric form of f , if
f : A × B → C, (a, b) 7→ f(a, b) and f̃ : A → Fun(B,C), a 7→ f̃(a), where
f̃(a) : B → C, b 7→ f(a, b). Sometimes we denote f̃(a), the value of f̃ at the
point a, by f(a, ).

In case of parametric functions we should be careful with the meaning of
the differentiation. For example, if A,B, C ⊂ R and there is a norm on the set
Fun(B,C) then
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Df̃(a) =
df̃

da
(a) 6≡ ∂̃f

∂a
(a) =

∂f

∂a
(a, ),

the derivative of the a-parametric form of f does not equal the a-parametric
form of the partial derivative of f with respect to a. The usual notation does
not distinguish f from f̃ , which can lead to confusion.

Example

Let us suppose that [t1, t2] ⊂ R, U ⊂ R3 is compact and

X1,3(U, g, gi) :=
{
ϕ ∈ C2 ([t1, t2]× U, R)

∣∣ ϕ |U ∈ X3(U, g);ϕ|t1 = gi

}
,

where gi is the initial, g is the boundary condition. X1,3(U, g, gi) is a proper
function space to formulate some initial-boundary value problems for parabolic
partial differential equations in the classical space-time. In this case the ϕ̃, the
t-parametric form of ϕ ∈ X1,3(U, g, gi) maps to every time point of the given
interval a space configuration:

ϕ̃ : [t1, t2] → X3(U, g), t 7→ ϕ̃(t) where ϕ̃(t) ∈ X3(u, g), x 7→ ϕ(t, x).

and
X3(U, g) =

{
ϕ ∈ C2(U, R) ∩ C0(U, R) |ϕ|∂U = g

}
is a field satisfying the given boundary conditions.

As an example to the usage of ϕ̃ let us see the construction of a restricted
variational potential for the full heat conduction equation of Fourier with a
constant heat conduction coefficient:

∂ϕ

∂t
−∇ · (λ0∇ϕ) =

∂ϕ

∂t
− λ0∆ϕ = 0.

The λ0 ∈ R+ heat conduction coefficient is generally not a constant function,
it can depend on the temperature. In this case the differential equation is a
quasilinear one, only the left hand side form is valid.

It is well known that the second term of the left hand side is a potent
operator but it is easy to prove that there exist no variational potential for the
time derivative.

Rosen [44] proposed a variational potential for the whole equation with the
prescription ”the time derivative must be held fixed during the variation”. This
specification can be interpreted that we restrict our X1,3(U, g, gi) function space
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onto X3(U, g). With the notations introduced above a possible variational po-
tential can be written as

S(ϕ̃(t)) =
∫

U

(
ϕ̃(t)

∂ϕ̃(t)
∂t

− λ

2
(∇ϕ̃(t))2

)
dV,

where ϕ̃ is not the original function but its t-parametric form.
After the differentiation of S by ϕ̃ we can get the Euler-Lagrange equation:

∂ϕ̃(t)
∂t

− λ0∇2ϕ̃(t) = 0,

because in this case ϕ̃(t) and ∂ϕ̃(t)
∂t are independent functions of X3(U, g)! Here

we must not identify ϕ̃(t) and ϕ, as Rosen did it, because so we would re-
turn from X3(U, g) to X1,3(U, g, gi) and S is not a variational potential on
X1,3(U, g, gi). So we cannot get back the original heat conduction equation, we
must remain on the restricted one! However this can result variational tech-
niques for the original problem too [13].
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