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Abstract

According to the present theories of magnetic media the intdnsic stability is violated.
Dia- and paramagnetic matenals cannot be stable with the usage of the same extensive
variables. Two different energy-momentum tepsors are proposed to resolve the problem.
fleywords: thermodynamic stability, energy-momentum tensors, dia- and paramagnetic
materials,

1. Introduction

According to the Second Law the intrinsic stability criteria in thermostatics
requires a concave entropy function. If the entropy depends on the exten-
sive variables, the second derivative of the specific entropy, D%s must be a
negative definite matrix.

For magnetic materials the most widely accepted treatment introduces
the magnetic polarization as an extensive variable

gf...;m),

If we accept the magnetic work in the form Bdm, that is the intensive
quantity for magnetic interactions is the magnetic induction B then the
Gibbs relation can be written as

du = Tds — pdv + ... + Bdm .

So the corresponding derivative of the entropy function is

by, .8
fdm T

and the second partial derivative according to m
s o

dm* | Py’
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where ¥y is the magnetic susceptibility and p is the relative permeability.

Therefore the specific entropy is a concave function of the extensive
variables if and only if xm is a positive number (function). However, we
know that the magnetic susceptibility is a negative quantity for diamagnetic
materials, and positive for para- and ferromagnetic materials. You can see
clearly the contradiction,

Common textbooks containing the thermostatic theory of magnetic
materials reflect this confusion. Different forms of the magnetic work are
introduced by different authors [1], [2] and most of the authors simply avoid
the treatment of diamagnetic materials [3], [4], [3].

In this short paper we give a possible resolution of the problem, how-
ever, to this end we should go back to the origin of the different work terms
in the first law, we should take into account the energy-momentum ten-
sors of the different electromagnetic media. The theory of electromagnetism
is essentially a special relativistic theory, therefore we will investigate this
problem considering special relativistic spacetime.

2. Electromagnetic Energy-Momentum Tensors for Magnetic
Materials

First of all we introduce some notations:

The electromagnetic field is an asymmetric cotensor denoted by F, the
polarization V and displacement & are asymmetric tensors, To see the clue
with the usual time and space splitted notations we give these quantities in
a momentary rest frame,

The time-like component of the electromagnetic field is the E electric
field, the space-like component is the magnetic field

Fu=(_UE -EB ) /

The time-like component of the polarization is the electric polarization and
the space-like component is the magnetic polarization:

Lo 0 P
mi( L B
The time-like component of the displacement is the electric displacement
and the spacc like component is the magnetic field strength:

0 D
Gi = ( g ) ;
Here we considered that the tensors and the cotensors can be identified with
the help of the Lorentz form. The relation of the field quantities:

D =P+ E,

G=F+.V—>{B —H+M.
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We can find a lot of different energy-momentum tensors in the literature, a
proper form of the electromagnetic field energy-momentum for a polarizable
medium is a well discussed problem from the beginning of the century. Here
we give some fensors and cite their assumptions. We gave two different
forms: first the relativistic four-vector notation is used (with indexes) after
that we give the expression in a momentary rest frame.

The first and well known form is due to MinkowskI (1908) [6]. He gave
this expression requiring the form invariance of the field energy-momentum.
This is the one that appears in most of the textbooks [3], [7], [8], [9].

v . 1 B LA ]
Ty = F7GY = S Fy G,

i _(%(E-D+B-H} ExH
L DxB ~EocD-HoB+LYE-D+B HJI

After that ABRaHAM gave the following expression in 1909-1910 [L0]. He
supposed that the field energy-momentum should be symmetric.

T:ﬁ az %EFQ?GJ_‘I e F,n.?"rc-n-r] et iF_ﬂ I-:;"rryu,d 4
+%c-2 (U2 (F" M~ MOVEy) 4 U (FO7 M, — MPTE,)| U,
T _(%[E-D+B-H} ExH )
S ExH -(EoD)*-(HoB)*+ {E-D+B -H)I /-

Some decades later DE GROOT and SUTTORP realized that a macroscopic
field energy expression should be based on a covariant statistical derivation
[11]. From the microscopic field equations they have the following formulas:

Tgs = =F-G- %F :F+[F,N)-UoU=UolU-N-F-UolU =
= —F"1G. A %F,,T‘g“‘f+ e~} F* M., U —
=(g™" + ¢ U UM, FXU U,
;(E? + BY) ExH
Tss = ~EoD ~HoB+ (1)
= +(4E-D+B-H)-M-B)I
Here the expression is given in three different forms, before the usual four
vector formulation [ give the expression in a frame independent notation,
teo [12], [13].

In thermodynamics, where the different balances have a practical ap-
plication, different authors suggested a different form of the field energy
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density. For example bE GROOT and MazuR [14], VERHAS [15] and Mau-
GIN [4] applied a different field energy densities. After that MaTOLCSI [16]
realized that this energy density can be given in a covariant form

Tou = ~F-G-2F:F-(FN]-g(F:N))-UoU =
_FH'TGE Al %FWGTLQEE Y C“z[F‘aT:HFYEI‘ICUﬂ o
_'ga?M'rc Ferx'r-"rﬂ} 1 %Fvc M UGUHE

;(E* +B? - M -B) Ex H
Tom = -EoD-HosB+
e +(4E D+B-H) -M-B)I
(2)
Let us note that the last two expressions differ only in their electromagnetic
field energy (in a momentary rest frame).

3. Thermodynamic Considerations

The electromagnetic field energy is a part of the whole energy balance. To
get the work terms in the First Law we should write the internal energy
balance and from the expression of the source of the internal energy (the
dissipation) we can conclude the polarization work terms. Using the expres-
sion of DE GROOT and SUTTORP [11] the source of the internal energy can
be written as

Jp dB

gy =j-E4+E-— -M. . —.
Sl dt at
Therefore the extensive quantity appearing as an independent variable in
the entropy function is B. So the Gibbs relation is:

du = Tds + EdP - mdB,
and the corresponding derivatives of the entIopy are:

s m 323 Xm
BT "FE " Ts (3)

The requirement of the intrinsic stability criteria suggests that the corre-
sponding medium is a digmagnetic one.

Similarly, from the expression of the thermodynamic field energy mo-
mentum we can get for the dissipation density:

s(u,p, B} —

: i) o ani
I:?u-‘]'E-i-E'Eé—""B'-'aT.
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Therefore the extensive quantity in this case is the specific magnetization
m. The appropriate form of the Gibbs relation is the one given in the
introduction:

du = Tds + EdP + Bdm.

The derivatives of the entropy:

GE B s I
3[1.'.'_. P: m} ot am % T 7 ﬂmz Tj{m . Eq}
The requirement of the intrinsic stability criteria shows that the correspond-
ing medium is a paramagnetic one.

Investigation of the field energy densities suggests a similar interpre-
tation as the thermodynamic considerations. Let us consider the energy
expressions of the different electromagnetic media separately. The energy
density of the pure field without any polarization is

1
fl = ~(E-D+B-H).
The energy density of the electric dipoles is

1
ey = ~5(E-P).

The energy density of the magnetic dipoles is

1
€ = —5(B-M).
The last two expressions require some further considerations. In polarizable
media we distinguish two different dipole types: permanent and induced.
The behaviour of the two electric and magnetic dipole types in an external
field is different. While both the induced and the permanent electric dipoles
turn to the same direction in an external field, the different magnetic dipoles
turn to the opposite direction. In view of this fact we should change the
sign of the field energy of induced magnetic dipoles, when no permanent
Ones are present.
If we add the three terms above we get the thermodynamic energy

density in (2):

ire) LR DB H e M BB e B My D B

"M o4 2 5 s TR ;
If we change the sign of the energy of the magnetic dipoles and we add the
three terms again, then we get the de Groot-Suttorp form energy density

7 TR o e o S s Lo, o EE B
EEM “E{E D+ B-H) E{E P}+2|:B M}"(2+ =
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4. Discussion

In the usual considerations on the electromagnetic field energy-momentum of
polarizable media people expect a unique expression for different materials.
Now we have seen that at least two basic expressions have to exist if we
require the intrinsic stability. In this case the two most widely accepted
expressions do not compete any more, they can be valid for different media.

Different energy-momentum tensors for different materials are fquite
common in continuum physics. However, those are based on different con-
stitutive laws. Here no constitutive laws were considered yet: we gave two
equivalent basic forms of the field energy momentum.

i Some immediate consequences of the above considerations are applied
in the relaxation theory of para- and diamagnetic materials [17].
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Abstract

We present a general proof for a design principle developed during the last two years: The
principle of equipartition of forces. The principle is derived for parallel, coupled transport
processes without restnictions on the phenomenclogical coefficients. Minimum entropy
production is obtained for the total system, when the thermodynamic forces of transport
are the same aver all parallel paths in the system. We review some of the results obtained
sa far by application of the principle o distillation columns.

Heywords: entropy production, energy cfficiency, irreversible thermodynamics, distina-
Liamn.

1. Introduction

Energy optimization is important in the process industry. Energy optimiza-
tion of a process means determination of minimum entropy production. Al
ready in his works on the symmetry relations, ONSAGER stated (1931a. b)
that entropy production 1s minimum in the stationary state, that is a state
with constant fluxes, Besaxn (1982) has described how minimum entropy
production can be obtained in practice for several cases of heat and mass
transfer. In a heat exchanger for example. he found a sharp minimum for
the entropy praduction for certain How conditions in the tube, For constant
transport coefficients, TonDEUR - KvAaLEN (1987) showed that minimum
entropy production is obtained when the entropy production rate is con-
stant through the apparatus. As a consequence of this, a heat exchanger
with countercurrent flow dissipates less energy than one with concurrent
flow; a well-known engineering observation.

The results of ToNpEUR - KVAALEN are in accordance with the re-
sults from finite time thermodynamics. [n a recent review on finite time
thermodynamics, ANDRESEN (1996) states: Constant rate of entropy pro-
duction is the path or operating strategy which produces the least overall
entropy in the system. In his elaboration on the topic in 1990, ToxDEUR




