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Abstract. The mesoscopic concept is applied to the description of microc-
racks. The balance equations of the cracked continuum result in the mesoscopic
directional balances of mass, momentum, angular momentum and energy. Av-
eraging over the length of the cracks the corresponding orientational balances
are given. A further averaging process leads to the macroscopic balance equa-
tions of the microcracked continua. Dynamic equations for the fabric tensors
of different order are derived using a multipole moment expansion of the orien-
tational crack distribution function. The simple example of the Griffith cracks
is treated. The role of physical assumptions on the microcrack representations
and the different macroscopic internal variable representations of microcracks
is discussed.

1. Introduction

To find suitable and applicable models for microstructured mechanical materials
is a challenge of the contemporary physics, especially of continuum mechanics and
statistical physics. An important particular (and relatively simple) example in this
respect is to describe the mechanical properties of the microcrack systems in elas-
tic materials. The two basic model levels are the continuum, where macroscopic
variables are introduced to characterize the microcrack system and the statisti-
cal, where the properties and interactions of single microcracks or the embedding
material are considered.

On the macroscopic, continuum level the suitable theories belong to continuum
damage mechanics. In this phenomenological continuum theory thermodynamic
internal variables of different tensorial order are used to calculate the influence
of cracks (and other damage) on elastic properties of the material and to predict
failure. It is important to remark here that the different continuum theories are
far from being capable to propose a single model for all important phenomena
connected to cracking (multiaxial loading conditions, material stability, dynamics,
etc..). The competing theories are using different macroscopic mechanical and ther-
modynamical concepts. The most important discussed aspects are the nature (e.g.
tensorial order, physical meaning) of the proposed macrosopic internal variables
and the laws governing their time development, i. e. the corresponding macro-
scopic dynamical laws. We do not want to analyse the situation on the macroscopic
level, but want to emphasize here that the lacking understanding in this level, that
is a macroscopic phenomenological model for the experimental observations (e.g.
in the frame of irreversible thermodynamics) means a serious disadvantage in the
statistical physical modeling.

On the other hand microcracking is an important problem in statistical physics
and is treated with two different approaches. Micromechanics is building from
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2 P. VÁN, C. PAPENFUSS, W. MUSCHIK

detailed properties of single cracks and extends the results with the help of statis-
tical methods [1]. The ’microscopic laws’ for a crack embedded in an ideal elastic
continuum are well treated and known [?, ?] and are difficult enough (long range,
tensorial, anisotropic interactions with singularities) to mean a challenge for the
basic principles of statistical physics on an equilibrium and nonequilibrium level,
too. The second large group of statistical models is based on lattice calculations and
simulations. These models introduce simple interactions between lattice elements
(e.g. springs) and want to grasp some general qualitative properties of the phenom-
ena with statistical methods. Some recent numerical and analitical investigations
are suggesting the validity of mean field behaviour in precence of quenched disor-
der in isothermal systems (that we can expect in ordinary experimental situations)
arguing that the failure due to microcracking can be treated as a first order phase
transition and the whole process as spinodal nucleation [?]. At the first investiga-
tions spinodal nucleation was discussed as a thermally activated process, where the
quenched disorder is irrelevant [?, ?]. Some recent treatments are claiming that
more realistic to consider a situation where a system is effectively at zero tempera-
ture and only the quenched disorder is relevant [?, ?]. All these investigations are
concentrating on the avalanche like behaviour of microfracturing and calculate the
scaling properties. However, the observed mean field behaviour in numerical simu-
lations of lattice models supports the view that phenomenological internal variable
models can be capable to characterize the material especially when we are far from
the quasistatic regime.

In this paper we propose an idea to bridge the microscopic-statistical approach
and the macroscopic-phenomenological one. We introduce a new level of modeling,
that is called mesoscopic because we go under the continuum level, the statisti-
cal distribution function of the microcracks is introduced. Hovewer, instead of a
detailed microscopic modeling general ideas are used to get the governing equa-
tions of the different distribution functions. The suggested method can be used
to derive different macroscopic internal variable models that are compatible with
the statistical description and to incorporate micromechanical information of single
microcracks, therefore to connect the statistical and phenomenological approaches.

Taking into account directional data distributions (e. g. normal vectors of pla-
nar microcracks) Kanatani [2] treated different possible statistical descriptions of
directional data and found a coordinate independent description in the form of
generalized Fourier series which is a coordinate independent form of the ’multi-
pole moment expansion’ known from classical electrodynamics [3]. Kanatani called
the corresponding moments of the directional data distribution as ’fabric tensors’.
So we can receive a statistically founded classification of the macroscopic internal
variables without any information on the possible dynamic properties. After that
different macroscopic thermodynamical methods, that are independent of the previ-
ous investigations, are used to get dynamic equations on the macroscopic variables.

However, in case of an other important family of microstructured continuum,
for liquid crystals, the same moment series expansion is successfully applied to get
not only the possible macroscopic thermodynamic variables but to get some gen-
eral information on their dynamic equations too [4, 5, 6, 7, 8, 9, 10, 11]. Here
balance equations are applied for the microstructured continuum and using them
we can get some information on the mesoscopic dynamics and we can derive dy-
namic equations for the macroscopic variables, too. These macroscopic variables
are the same moments of the orientation of liquid crystal molecules that are used
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for microcracked continuum, however the nomination is different, they are called
’alignment tensors’.

In this paper we apply the mesoscopic theory to get the dynamic equations of
the mesoscopic variables, to introduce macroscopic variables and the general form
of their dynamic equations. These considerations give a good possibility to com-
pare the macroscopic consequences of the mesoscopic approach with other macro-
scopic theories for example with rational thermodynamic theories of microstruc-
tured continuum, where the derivation of the ’micromomentum balances’ is based
on a strange application of material frame indifference [12, 13, 14]. On the other
hand we can introduce specific ’single crack’ properties (that is impossible in case
of liquid crystals) to solve the dynamic equation for the distribution function and
get information far from the quasistatic range that can be comparable with the
micromechanical and lattice models.

2. Basic fields and functions

In liquid crystals molecules of restricted symmetry constitutes the material con-
tinuum. In nematic liquid crystals the molecules are rod like, therefore we introduce
a quantity that characterizes the orientation of the molecules. There are two ba-
sic possibilities: we can give it as an additional vectorial field variable, where this
(unit)vector is called the macroscopic ”director”. In this way we can arrive at the
Ericksen-Leslie-Parodi theory of nematics. The other possibility is to introduce the
director as a mesoscopic variable. In this case the additional orientational infor-
mation (a unit vector) plays a similar role as the time and the space are, becomes
the variable of the field quantities. In this way we arrive to the mesoscopic theory
of liquid crystals, where all the field quantities are defined on this extended ’ne-
matic space’ S2 × E× I, where S2 denotes the unit sphere, E and I represents the
space and the time. Sometimes can be useful to introduce more difficult micro-
scopic quantities to characterize the continuum. If the internal structure that we
are modeling is more complicated then the characteristic mesoscopic variables can
be more complicated, too. For example in case of biaxial nematics the molecules
have two axes and the resulted symmetry is best described by quaternyos.

What can we say about the damaged materials? Here the damage can have
a more difficult microscopic structure than in liquid crystals, but we can restrict
ourselves to the simple and frequently investigated case of planar microcracks. Now
the damage consist of little planar surface elements embedded in an elastic or
elastoplastic (or any kind of) background material. In this case a crack can be
represented by its surface vector. If the cracks are fixed in the material, that is they
do not move independently on material elements, then we can apply the mesoscopic
concept to describe the microstructure. Therefore a characteristic material element
of the microcracked continuum is a crack together with the containing base material.

Let us observe the difference between liquid crystals and microcracks a bit more
closely. With a mesoscopic theory we pierce into the representative volume ele-
ment of the continuum description and instead of the homogenization procedure
(from where we would arrive at the continuum theory) we suppose that the macro-
scopic fields themselves depend on the microstructure and therefore we consider
the statistical distribution of the orientations. In liquid crystals the shape of the
molecules represents the microstructure and therefore the representative volume
elements of the orientation and the other fields (especially mass) can be the same.
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However, in case of microcracks the status of the microstructural information can
be different, because they can be considered as if to be embedded into an elastic
(or visco-elastic or any but continuous) base material. In this case we are using
different representative volume elements for the meso-micro transition and for the
macro-micro transition.

In this paper we give a mesoscopic model of a continuum that contains several
randomly distributed microcracks. The microcracks are supposed to be two dimen-
sional and flat, every microcrack is characterized by its surface ’vector’ l ∈ E ∧ E
and spacetime position r ∈ M . Therefore the domain of all field quantities of the
mesoscopic theory is interpreted on a subset of this direction space. For example
the directional density ρ̃ of the continuum is given as follows

ρ̃ : E ∧ E×M −→ R+, (l, r) 7→ ρ̃(l, r),

where E is a three dimensional Euclidean vector space and M is the spacetime (a
structured four dimensional affine space). If we are in a non-relativistic spacetime
and do not insist on a frame independent description we can introduce an inertial
observer (as usual) [15]. As a final simplification we will use polar vectors instead
of axial ones to represent the surfaces of the cracks introducing the usual form and
symmetry requirement for the density function:

ρ : El × E× I −→ R+, (l,x, t) 7→ ρ(l,x, t),

ρ(l,x, t) = ρ(−l,x, t).

The direction, position and time of microcracks are denoted by (l,x, t) ∈ El ×
E × I. The corresponding mesoscopic space El × E × I, where El and E are three
dimensional Euclidean spaces and I is a one dimensional oriented vector space,
will be called as direction space. In the following we suppose that the directional
number density of the cracks has finite support, that is we consider a finite piece
of material where the maximum length of the cracks is limited by the size of the
sample (for example). Let us denote this maximal length by lmax.

A further important quantity can be introduced if we decompose the direction l
into a length l ∈ R+ and an orientation n ∈ S2 as l = ln, where n is a unit vector
(n2 = 1). Now the orientational density of the cracks is defined by the following
integral:

ρ̂(n,x, t) =
∫ lmax

0

ρ(ln,x, t)l2dl,(1)

We will call the S2×E× I mesoscopic space of the orientation, position and time
(n,x, t) of the microcracks as orientation space. For the further calculations is very
important to keep in our mind the basic applicability criteria of the mesoscopic
concept: the cracks are fixed in the base continuum. We render a fixed amount
base material to every microcrack. In this case, and only in this case the density of
the media will characterize the density of the number of cracks, too. Taking into
account this remarks we can write that

ρ̄(x, t) := 〈ρ(l,x, t)〉 :=
1
2

∫

R3
ρ(l,x, t)dVl =

1
2

∫

S2
ρ̂(n,x, t)dn

is the macroscopic density of the microcracks at spacetime point (x, t). Here dVl

denotes the Lebesque measure of the microcrack part of the direction space, dn is
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the corresponding surface measure of S2 in the orientation space. Furthermore

M(t) =
∫

R3
〈ρ(l,x, t)〉dV =

∫

R3
ρ̄(x, t)dV =

1
2

∫

R3

∫

R3
ρ(l,x, t)dVldV

=
1
2

∫

R3

∫

S2
ρ̂(n,x, t)dndV

is the total mass of the sample continuum. The symmetric polar vector represen-
tation (ρ(l,x, t) = ρ(−l,x, t) and ρ̂(n,x, t) = ρ̂(−n,x, t)) made be necessary to get
the half of the last two integrals.

It is useful to normalize the densities introducing the following directional prob-
ability distribution

f(l,x, t) :=
ρ(l,x, t)
ρ̄(x, t)

,(2)

orientational probability distribution

f̂(n,x, t) :=
ρ̂(n,x, t)
ρ̄(x, t)

,(3)

and length probability distribution function

fl(l,x, t) :=
ρ(l,x, t)
ρ̂(n,x, t)

=
f(l,x, t)

f̂(n,x, t)
.(4)

At the end of this section let us remark, that a mesoscopic theory formally
resemblances to a mixture theory that uses the continuous directional or orienta-
tional ’index’ l or n for the ’components’ instead of a discrete one. This analogy
can be a help in the interpretation of the directional and orientational ’component’
equations.

3. Mesoscopic kinematics

The following formulas make possible to give substantial balances in the meso-
scopic continuum in addition to the local ones, so we can grasp the meaning of the
corresponding mesoscopic balances more easily. Let us consider a piece of contin-
uum material. Now we refer the material elements with their position X at some
initial instant t0, as usual. Let us denote x the position of the appropriate material
element at the instant t. We give the position of the material element X at the
time t with the map:

x : E0 × I ½ E, (X, t) 7→ x(X, t).

Here we denoted the three dimensional Euclidean vector space of positions by
E and the structural space of material points by E0. Similarly we can give the
material element at the position x and instant t with the map:

X : E× I ½ E0, (x, t) 7→ X(x, t).

The two maps are one to one and they are each others inverses at the same
instant x(X(x, t), t) = x and X(x(X, t), t) = X.

The mesoscopic structure is characterized by the variable l ∈ El. In case of
nematic liquid crystals this is the unit sphere S2, for biaxial nematics S3 and for
planar microcracks a subset of E. The microstructure is connected to the material
element, therefore we can give its value at the instant t corresponding to the material
element X: l : E0 × I ½ El, (X, t) 7→ l(X, t).
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Now we define the velocities:

v :=
∂x
∂t

(X, t), and vl :=
∂l
∂t

(X, t).

If a field quantity depends on the direction l and the position x we can define
its material time derivative as follows:

ḟ(l, x, t) := (
∂f

∂t
+ v · ∇f + vl · ∇lf) ◦ (l,x, t)(X, t).(5)

Until now we considered a continuum, therefore the position x and the direction
l were treated as fields. However, the situation is more difficult, we are under the
continuum level. In case of liquid crystals on the microscopic level we have single
molecules. For cracks we can suppose that we are in the continuum domain as
regards the mass, but the material elements contain single microcracks therefore
the direction can be discontinuous from crack to crack at this level. Our task is
to get a continuum description and at the same time keeping some information
from underneath the usual macroscopic continuum level. Therefore we accomplish
a second homogenization, forming a bigger material element from the micro-meso
ones and introducing a center of mass X0 for that macro material element with
volume Vm:

X0 =

∫
Vm

Xρ(X)dVm∫
Vm

ρ(X)dVm
.

Now if we completely replaced the micro material elements with macro ones
(X → X0) we would get the macroscopic director l(X0, t). Instead of doing that
we would like to keep some microscopic information and therefore we make the
X → (X0, l) substitution supposing that there is a distribution of the directions
inside the macro element. In this way l is not a field quantity any more as we
supposed above, but stands on equal footing with X0 and plays and independent
role characterizing the macro continuum element. Therefore the previous functions
defined on the ”micro-material space” become functions on the mesoscopic space
(e.g. the v,vl velocities). Moreover, as the continuity of the variables is secured
with the homogenization procedure we can introduce the previous (5) derivative as
a ”material” derivative on the mesoscopic space.

4. Directional balances

After these preparations we are ready to get the mesoscopic balance equations
of the directional quantities. All of the following local balances were derived from
the proper global balances using a generalized form of the Gauss-Stokes integral
theorem (or Reynolds transport theorem equivalently). The difference of the usual
spacetime balances and the following generalized balances where the spacetime vari-
ables are completed with the direction is that now the ’configuration’ space of the
continuum is six dimensional. Therefore the velocity space is also six dimensional,
we get an additional directional velocity component. Moreover the local balances
will have an additional ’current term’ with the divergence of the directional part of
the total two times three dimensional current densities (∇l·).

Using the introduced ’mesoscopic material time derivative’ (5) we will give the
corresponding substantial balances, too.
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First we can get the fundamental balance of mass:
∂ρ

∂t
+∇ · (ρv) +∇l · (ρvl) = 0,(6)

and

ρ̇ + ρ(∇ · v +∇l · vl) = 0,(7)

where v is the directional material velocity, vl is the velocity of the change of crack
orientation and length. Here, and in this section all quantities are directional, their
domain is the subset of the direction space.

The balance of momentum:
∂ρv
∂t

+∇ · (ρv ◦ v − tT ) +∇l · (ρvl ◦ v) = ρf ,(8)

and

ρv̇ −∇ · tT = ρf .(9)

Here t is the stress and f is the body force density. The superscript T denotes
the transpose of the corresponding second order tensor. We applied here that the
change of the momentum, even if it depends on the direction, is due only to the
body and ’normal’ surface forces that is there are no surface forces in the direction
component and there is no conductive directional momentum current.

Similarly, for the balance of moment of momentum we will get the form
∂ρs
∂t

+∇ · (ρv ◦ s− πT
)

+∇l · (ρvl ◦ s) = tas + ρg,(10)

where s is the directional spin density, tas denotes the antisymmetric part of the
stress tensor, π is the couple stress density and g is the density of couple force. The
substantial form is

ρṡ−∇ · πT = tas + ρg,(11)

At the end we give the directional internal energy density balances. These we
got subtracting the balances of the kinetic and rotational energy from the balance
of the total energy:

∂ρε

∂t
+∇ · (ρvε + q) +∇l · (ρvlε + ql) = ∇ ◦ v : t + ρΞ.(12)

Here q and ql are the heat current and the directional heat current, respectively
(both mesoscopic). Ξ is the internal energy production related directly to the
microcrack propagation. The corresponding substantial form:

ρε̇ +∇ · q +∇l · ql = ∇ ◦ v : t + ρΞ.(13)

5. Orientational balances

Traditionally in damage mechanics we are interested only in the orientational
part of the data distributions, when the length of the cracks is supposed to be
statistically independent on the orientational part of the data distribution, we use
averaged, uniform size cracks in the treatment. Therefore here we give the balances
of the orientational quantities, too. If we want to get an orientational quantity
from a directional one we should average over the microcrack length using the in-
troduced directional distribution function f and length distribution function fl (see
(2) and (4)). To do this we will integrate the directional balances over the micro-
crack length. Worthy of note here that the time derivation and normal divergence



8 P. VÁN, C. PAPENFUSS, W. MUSCHIK

commutes with the integration over the length, and for an arbitrary directional
function g

∫ lmax

0

∇lg(l)l2dl = ∇n

∫ lmax

0

g(ln)l2dl,(14)

The commutation properties and (14) suppose several identifications and reg-
ularity properties. For example calculating the formula (14) the splitting of the
directional derivative was accomplished as ∇l = (n · ∇l, (I− n ◦ n)∇n) = ( ∂

∂l ,∇n),
and (0,a) = a. We will use the hatˆfor the orientational quantities (as above) and
introduce the notation 〈−〉l for the length averaging. If the orientational velocities
are v̂ := 〈v〉l and v̂l := 〈vl〉l, then we get the orientational mass balance

∂ρ̂

∂t
+∇ · (ρ̂v̂) +∇n · (ρ̂v̂l) = 0.(15)

In substantial form too:
˙̂ρ + ρ̂∇ · v̂ + ρ̂∇n · v̂l = 0.(16)

The balance of momentum in local form can be given as:
∂ρ̂v̂
∂t

+∇ · (ρ̂v̂ ◦ v̂ − t̂T ) +∇l · (ρ̂v̂l ◦ v̂ − T̂T ) = ρ̂f̂ .(17)

Here we introduced the orientational stress t̂ and orientational microstress T̂ as
follows:

t̂ = ρ̂v̂ ◦ v̂ −
∫ lmax

0

(ρv ◦ v − t)l2dl = ρ̂(v̂ ◦ v̂ − 〈v ◦ v〉l) +
∫ lmax

0

tl2dl,

T̂ = ρ̂v̂l ◦ v̂ −
∫ lmax

0

ρvl ◦ vl2dl = ρ̂(v̂l ◦ v̂ − 〈vl ◦ v〉l).

We can give the substantial form of the orientational momentum balance, too

ρ̂ ˙̂v − (∇ · t̂T +∇l · T̂T ) = ρ̂f̂ .(18)

Remarkable is the appearance of microstress, a conductive orientational momen-
tum current in the orientational momentum balance.

The local balance of moment of momentum:
∂ρ̂ŝ
∂t

+∇ · (ρ̂v̂ŝ− π̂T ) +∇n · (ρ̂v̂lŝ− Π̂T ) = t̂as + ρ̂ĝ(19)

Here ŝ = 〈s〉l is the orientational spin, ĝ = 〈g〉l is the orientational couple force
vector. However, we should be careful because for example t̂as 6= 〈tas〉l but we
should consider the previous definition. Moreover the couple stress π̂ and the new
orientational couple stress T̂ are defined as

π̂ = ρ̂(v̂ ◦ ŝ− 〈v ◦ s〉l) +
∫ lmax

0

πl2dl,

Π̂ = ρ̂(v̂l ◦ ŝ− 〈vl ◦ s〉l).
It is easy to see, that π̂ is orthogonal to n. The corresponding substantial

equation:

ρ̂ ˙̂s− (∇ · π̂T +∇n · Π̂T ) = t̂as + ρ̂ĝ(20)

The orientational balance of the internal energy is very similar to the directional
one, but here again the conductive currents and the source term, the expression of
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the energy production is not simply the average of the corresponding directional
quantities. The single averaged orientational term is the internal energy itself (ε̂ =
〈ε〉l).

∂ρ̂ε̂

∂t
+∇ · (ρ̂v̂ε̂ + q̂) +∇n · (ρ̂v̂lε̂ + q̂l) = ∇ ◦ v̂ : t̂ + ρ̂Ξ̂.(21)

The definition of the heat currents and the source term are as follows:

q̂ = ρ̂(〈vε〉l − v̂ε̂) +
∫ lmax

0

ql2dl,

q̂l = ρ̂(〈vlε〉l − v̂lε̂)

Ξ̂ = ρ̂〈Ξ〉l +
∫ lmax

0

∇ ◦ v : tl2dl −∇ ◦ v̂ : t̂.

We can easily get the substantial form:

ρ̂ ˙̂ε +∇ · q̂ +∇n · q̂l = ∇ ◦ v̂ : t̂ + ρ̂Ξ̂.(22)

6. Macroscopic balances

In the calculation of the macroscopic balances we can use the directional or
the orientational balances, too. Maybe the first way is the more convenient. We
will denote the macroscopic quantities with the bar̄ and the averaged directional
quantities that are calculated with the help of the directional distribution function
(2) with brackets 〈−〉. The corresponding macroscopic equations are calculated
with the integration of the directional balances over l. This integration commutes
with the time and space derivatives and eliminates the divergence of the directional-
orientational derivative, because g has a compact support∫

Vl

∇l · gdVl = 0.

If the macroscopic (barycentric) velocity v̄ = 〈v〉 then with the previously intro-
duced macroscopic density ρ̄, the balance of mass can be written as

∂ρ̄

∂t
+∇ · (ρ̄v̄) = 0.(23)

The balance of momentum:
∂ρ̄v̄
∂t

+∇ · (ρ̄v̄ ◦ v̄ − t̄T ) = ρ̄f̄ ,(24)

where the macroscopic force density f̄ = 〈f〉. Again the macroscopic stress is not a
simple average, it can be calculated as

t̄ =
∫

Vl

tdVl + ρ(v̄ ◦ v̄ − 〈v ◦ v〉).

The balance of moment of momentum and the balance of internal energy can be
calculated similarly.

∂ρ̄s̄
∂t

+∇ · (ρ̄v̄ ◦ s̄− π̄) = t̄as + ρ̄ḡ,(25)

where the macroscopic couple force density ḡ = 〈g〉. The macroscopic couple stress
also includes a contribution due to deviations of v and s from the average, it can
be calculated as

π̄ =
∫

Vl

πdVl + ρ(v̄ ◦ s̄− 〈v ◦ s〉).
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The balance of the internal energy becomes:
∂ρ̄ε̄

∂t
+∇ · (ρ̄v̄ε̄− q̄) = ∇ ◦ v̄ : t̄ + ρ̄Ξ̄,(26)

where

q̄ = ρ̄(〈vε〉 − v̄ε̄) +
∫

Vl

qdVl,

ρ̄Ξ̄ = ρ̄〈Ξ〉+
∫

Vl

∇ ◦ v : tdVl −∇ ◦ v̄ : t̄.

Let us remark that on the directional and orientational level it was unreasonable
to suppose a positive entropy production but it has sense on a macroscopic level
and we can exploit it.

7. Crack propagation

For the most frequently used materials in damage mechanics the balance equa-
tions given above are too general. Therefore we are introducing some simplifying
assumptions:

1. The base material does not have an internal spin, that is a crack does not
rotate independently from the base material.

2. There are no couple forces (g = 0) and couple stresses (Π = 0).
3. There are no external body forces (f = 0),
4. The material is in mechanical equilibrium (v̇ = 0).
5. The velocity does not depend on the crack size and orientation, that means

it is equal to the barycentric velocity (v(l, x, t) = v̄(x, t)).
Because of the first condition we do not need the balance of the internal energy

the third condition simplifies the spin balance to a symmetric stress. For this
symmetric stress the balance of the momentum together with the fourth and fifth
condition results in an equation of the mechanical equilibrium

∇ · t = 0.(27)

Very similarly we can get in the orientational space:

∇ · t̂ = 0(28)

Moreover, the balance of mass simplifies considerably because of the last condi-
tion:

∂f

∂t
+ v̄ · ∇f +∇l · (fvl) = 0,(29)

where f = ρ/ρ̄ is the directional probability density as it was given in (2) and v̄ is
the macroscopic velocity. The substantial form is remarkable simple:

ḟ + f∇l · vl = 0.

Integrating over the crack length we get the following orientational balance:

∂f̂

∂t
+ v̄ · ∇f̂ +∇n · f̂ v̂l = 0,(30)

where the orientational crack velocity v̂l was introduced. Let us observe, that
(29) is formally the same as (30) but that the functions are different (directional-
orientational).
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Therefore our simplified final system of equations is (27) and (29) at the direction
space, or (28) and (30) is at the orientation space. Now we can consider several
possibilities to have a closed, soluble system. We can try to close the system on
the mesoscopic or on the macroscopic level.

– If we consider some specific information on the crack propagation and cal-
culate the crack growth speed vl. This is promising because this velocity
is connected to the micromaterial element and therefore we need to investi-
gate a single crack to calculate it. In this way, introducing the corresponding
state space and considering some constitutive assumptions on the mesoscopic
stress, there is a good hope to close the system at the mesoscopic level. The
problematic point can be the constitutive assumption for t. On the meso-
scopic level, without an inequality from the second law for the mesoscopic
functions, the constitutive theory is more approximative.

– The other possibility can be to calculate the macroscopic balances from the
mesoscopic ones. In this case the orientational balances are the more promis-
ing, because here the moment series expansion gives a familiar and understood
process (see e.g. [5]). We can try similar series expansions at the directional
space too, but the most straightforward choices will mix the length and ori-
entational information, therefore the meaning of the macroscopic quantities
is not evident.

7.1. Moment series expansion and order parameters. First we will investi-
gate the consequences of moment series expansion of the distribution function f̂
and the equation (30). We can introduce the following alignment-fabric tensors

a(k)(x, t) :=
∫

S2
f̂(n,x, t) n ◦ ... ◦ n dn,(31)

where ... denotes the symmetric irreducible part of a tensor [16]. Remarkable, that
only the even order tensors appear in the series because the microcracks are repre-
sented by axial vectors. These damage parameters are macroscopic quantities and
they called ’fabric tensors of the second kind’ in damage mechanics (see Kanatani
[2] or Krajcinovic [1]) and were introduced on a purely statistical ground, without
a mesoscopic foundation.
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Now let us turn our attention to the series expansion of the equation (30). We
can get the following system of equations for the k-th moment [?]:

da
(k)
n1...nk

dt
− k (ω × a(k)) n1...nk

=
2k + 1
k!4π

∑

l even

(2l − 1)!!

((∮

S2
δv̂p nm1 . . . nml

nn1 . . . nnk
d2n a(l)

m1...ml

)

,p

+

+
(∮

S2
δv̂p nm1 . . . nml

nn1 . . . nnk
d2n(ln ρ),p+

+
∮

S2
nm1 . . . nml

nn1 . . . nnk
(∇n × δω̂) · dn

)
a(l)

m1...ml
−

− l

∮

S2
nm1 . . . nml

nn1 . . . nnk

(
δω̂ × a(l)

)
m1...ml

· dn +

+
∮

S2
δv̂p nn1 . . . nnk

d2n(ln ρ),p +
(∮

S2
δv̂p nn1 . . . nnk

d2n

)

,p

+

+
∮

S2
nn1 . . . nnk

(∇n × δω̂) · dn

)
,

where ω = 1
2∇ × v, δω̂ = ω̂ − ω̄, δv̂ = v̂ − v̄ and we denoted the components of

the velocity with the index p to avoid misunderstanding. In this way we have got a
whole set of possible macroscopic damage parameters together with a general form
of their dynamic equation. Let us investigate more closely the dynamic equation of
the second order tensor term in the expansion. It seems to be useful to put down
the definition and the dynamic equation for that term separately as follows

a(x, t) :=
∫

S2
f̂ n ◦ n dn,(32)

and we get the following dynamic equation
∂a
∂t

+ v̄ · ∇a +
∫

S2
n ◦ n ∇n · (f̂ v̂l) = 0.(33)

Or equivalently
∂a
∂t

+ v̄ · ∇a + 2〈 vl ◦ n 〉 = 0.(34)

Without calculating the last term we can see that a is a normal internal variable
in the sense that a local first order differential equation describes its change.

It is worth to investigate separately the uniaxial case, when the alignment tensors
can be expressed in terms of order parameters S(k) and a unit vector d in the
following way:

a(k) = S(k) d ◦ ... ◦ d (k = 2, 4, ...)

where the value of the order parameters S(k) is one in case of total alignment (the
microcracks stand parallely) and zero for randomly oriented cracks. In case of a
second order alignment tensor (a(2) = S(2) d ◦ d ) the following dynamic equations
can be written for the order parameter:

dS

dt
+ ed · 〈 vl ◦ n 〉 · d = 0.(35)
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Moreover for the vector d we can get:

S
dd
dt

= 2(d ◦ d− δ)d : 〈 vl ◦ n 〉
Let us remark that are cases when a truncation of the series leads to paradoxes.

If the microcrack distribution is uniaxial than the best fitting alignment tensor can
result in negative crack densities, the so called ’anticracks’ regions in the approxi-
mated data distribution [17]. This unexpected property can be removed if we use a
director (vectorial) internal variable representation instead of the even order trace-
less tensors. The single vectorial approximation results in a macroscopic ’director’
theory.

7.2. Solution for the distribution function: Griffith cracks. In this section
the equation of motion for the mesoscopic distribution function is specialized con-
sidering a specific single crack model. In this case we can start from the directional
level and we can calculate the crack size distribution function. The following addi-
tional assumptions are introduced:

– The crack surface area can increase, but cannot decrease.
– The crack velocity is independent of other cracks in the vicinity, i.e. cracks

do not interact.
– crack inertia is neglected in the expression for the crack velocity, i.e. it is

assumed that the crack stops enlarging instantanuously when the external
load stops changing.

– All the idealizations assumed by Griffith [?] (e.g. two dimension, ideal elliptic
cracks, etc..) are supposed here.

Let us observe that these seemeingly restrictive conditions are in some respect
more general than the restrictions used explicitly or implicitly in models of microme-
chanical origin [?, 1, ?]. For example we did not assume special crack orientations
or definite interactions between the microcracks.

From the mesoscopic balance of mass we have derived the following differential
equation for the directional distribution function

∂f

∂t
+ v̄ · ∇f +∇l · (fvl) = 0.(36)

In the following we use spherical coordinates. In spherical coordinates the meso-
scopic velocity vl is decomposed into the length change velocity vc and the orien-
tation change velocity ω, which is zero in our model:

vl(l, x, t) = (vc(l, x, t), ω(l, x, t)).(37)

From the model of Griffith [?] it follows for the crack length change velocity:

vc = − 2
m

l3/2Ṙ,(38)

where R is the stress at the location of the crack, and m is a material depenent
constant. In the following we consider the case where slowly changing external
loads P and Q are applied to the sample as shown on figure 1.

The R used by Griffith has been given by Inglis [?] in terms of the parameters
α0, β, and θ, where θ is the angle between the crack orientation and the z-axis, α0

is the ratio of diameter to thickness of the crack (ratio of the large to small axis
of the ellipse describing the crack in the model of Griffith). α0 is very large and is
assumed to be constant in time according to our preliminary asumptions (because
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otherwise the crack length and orientation would not be the only crack variables).
β is the parameter on the ellipse. According to the previous assumption (α0 À 1)
the stress is maximal for β = π, i.e. on the tip of the crack (the real maximum is
very close to that, at least for Griffith cracks). Therefore we will set here β = π.
θ is constant in time because the crack cannot change its orientation. With these
assumptions we obtain from the paper by Griffith [?] the following expression for
the stress change rate:

Ṙ = c1(Ṗ + Q̇) + c2(Ṗ − Q̇)(39)

c1 =
(e2α0 − 1)cos(2Θ)

ch(2α0)− 1

c2 =
sh(2α0)

ch(2α0)− cos(2Θ)
The coefficients c1 and c2 depend on crack orientation, but in our model not on

position and time. If we avarage over different crack orientations, the result will
depend on the above introduced order parameters.

Now the mesoscopic velocity vl derived from the expressions (39) and (38) is
introduced into the differential equation for the distribution f . In spherical coor-
dinates we have:

∇l · (vlfl) =
1
l2

∂

∂l

(
l2vcf

)
=(40)

=
1
l2

∂

∂l

(
− 2

m
l7/2

(
c1(Ṗ + Q̇) + c2(Ṗ − Q̇)

)
f

)
,

which results in the equation for the distribution function:
df

dt
= −∇l · (vlf) =

1
l2

∂

∂l

(
2
m

l7/2
(
c1(Ṗ + Q̇) + c2(Ṗ − Q̇)

)
f

)
.(41)

Separation of the variables gives the solution of the differential equation.
Moreover, we can go further introducing the moments of the distribution function

as macroscopic variables. From (41) we can derive evolution equations for the
particular moments, too.

In case of Griffith cracks we can introduce the orientational order parameters and
the length order parameters as macroscopic quantities describing the mesoscopic
distribution. However, there are several other possibilities. The question arises
which macroscopic parameter is relevant for the mechanical properties of the mate-
rial. Here we mention an example for a macroscopic parameter that is different to
the moments. In the simple variation of the one dimensional ”loose bundle parallel
bar” model of Krajcinovic [1] the material is assumed to consist of elastic parallel
bars of fixed diameter l0. When the projection of the crack length perpendicular to
the bar axis is greater than l0, the bar is broken and does not support stresses any
more. The damage parameter D is introduced as the ratio of broken bars over the
whole number of bars. Translating this definition to the mesoscopic theory with
Griffith cracks we can define:

D(x, t) =
∫ l0

0

f(l,x, t)l2dl(42)

as a new macroscopic parameter. The mesoscopic theory provides tools to deal (dy-
namics, relation to the moment series expansion, etc...) with this damage variable,
too.
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8. Discussion

In this paper we investigated the applicability of the mesoscopic concept for
microcracks. The physical conditions show that if we consider planar microcracks
that are fixed in the surrounding media (no diffusion, unlike the dislocations) then
the formalism and the results developed for liquid crystals are applicable and can
give some fundamental informations on the possible macroscopic internal variables
and on their dynamics, too.

For example according to the present investigations the moment series expansion
of the orientational distribution function does not close the long discussion on the
nature of the tensorial order of the internal variables in continuum damage mechan-
ics. First of all the introduction of an orientational distribution function is only a
convenient simplification of the situation and there can be cases when the length
and the orientation of the cracks are statistically dependent. On the other hand
the dynamics of the microcrack distribution depends on the mesoscopic space.

Sometimes a vectorial representation is simpler and fits better than a tensorial
one (uniaxial case). This can be interpreted as special case of uniaxiality in the
fabric tensor description. The situation is best seen from the point of view of liquid
crystal theories, where both kind of descriptions are present. Similar symmetry
requirements as in the case of microcracks (head-tail symmetry) results in only
even order terms in the alignment tensor series expansion, but the vectorial director
theory of Ericksen-Leslie-Parodi-Verhás is well usable (and a little bit simpler) in
a lot of systems.

In continuum damage mechanics we can find examples of very different damage
descriptors (Scalars: [18, 19], vectors: [20, 21, 22, 23], second order tensors: [1],
higher order tensors: [24]). From a mesoscopic point of view the relation between
the macroscopic theories with internal variables of different tensorial order is clear
[6, 7, 9]. Furthermore the mesoscopic theory gave a particular form of the possible
dynamic equations on the mesoscopic and on the macroscopic level, too. Without
calculating a particular source term we can see that it is a first order equation in the
time and space derivatives. Using further specific assumptions on the dynamics of
the extension of single microcracks one can get a closed system of equations for the
dynamics of the moments of the microcrack distribution and for the distribution
function itself.

It can be important to see, that our results do not correspond to some other
microstructural continuum theories [12, 13, 25], where a second order equation is
supposed for the dynamics of the microstructure.

Let us give a closer look to this proposition. According to the suggestion of
Capriz we include a general kinetic energy term into the energy balance and after
some calculations based on the principle of material frame indifference you can
conclude on the micromomentum balance [13]:

ρ

(
˙(

∂κ

∂ν̇

)
− ∂κ

∂ν

)
− ρβ + χ = 0(43)

where ν is the parameter of the microstructure (e. g. microcrack length), β, χ
can be interpreted as ’microforces’ and ’microstresses’ and they must be given
constitutively. The first term contains κ(ν, ν̇), the ”micro-kinetic energy”. Easy to
prove that this term cannot result in a first order equation for ν.
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On the other hand we can give some remarks on the statistical approaches,
too. The mesoscopic theory in some sense supports the validity of the mean field
descriptions in case of simple crack orientation distributions when the first terms
of the momentum series expansion can represent the length distribution functions.
For example this can be expected when uniaxial loading conditions were applied to
an initially undamaged material as it is expected in lattice models where the mean
field scaling was observed [?]. Hovewer, the reason of long standing metastable
states should be explained on the phenomenological level, too.
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[16] H. Ehrentraut and W. Muschik. On symmetric irreducible tensors in d-dimensions. ARI,

51(2):149–159, 1998.
[17] D. Krajcinovic. Damage mechanics. Elsevier, Amsterdam-etc., 1996. North-Holland series in Ap-

plied Mathematics and Mechanics.
[18] L. M. Kachanov. On the time to failure under creep conditions. Izv. AN SSSR, Otd. Tekhn. Nauk.,

(8):26–31, 1958.
[19] J. Lemaitre. A Course on Damage Mechanics. Springer, Berlin-etc., 1996.



MESOSCOPIC DYNAMICS OF MICROCRACKS 17

Q

P
y

x

Figure 1. The loading sample with a crack, according to Griffith

[20] L. Davison and A. L. Stevens. Thermomechanical constitution of spalling elastic bodies. Journal
of Applied Physics, 44(2):668–674, 1973.

[21] D. Krajcinovic and G. U. Fonseka. The continuous damage theory of brittle materials, part 1:
General theory. Journal of Applied Mechanics, 48:809–815, 1981.
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