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ABSTRACT. It is widely accepted that a variational principle cannot be con-
structed for an arbitrary differential equation; a rigorous mathematical condi-
tion shows which equations can have a variational formulation. On the other
hand, the importance of variational principles in various fields of physics re-
sulted in several methods to circumvent this condition and to construct another
type of variational principles for any differential equation. In this paper the
common origin of the considered methods is investigated, and a generalized
Hamiltonian formalism is formulated. Additionally, constructive algorithms
are given by different methods to construct variational principles. Simple ex-
amples are presented to make construction methods more transparent: several
Lagrangians are constructed for the different forms of the Maxwell equations
and for the extended heat conduction equation.

1. INTRODUCTION

The existence of variational principles for different physical theories is a great
mystery in physics. A variational formulation of a physical problem can be useful
because we can use special solution methods, we can have a machinery to handle
symmetries and a deeper insight into the structure of a theory. Several books and
papers suggest the view that a variational formulation of a problem is an important
achievement in a physical theory, because the variational principles present a simple
and straightforward method to summarize a whole theory in a single formula.

On the other hand it is well known that the possibility of formulating a physical
theory by a variational principle is a restriction; we cannot give a variational form
for an arbitrary differential equation. A strict mathematical theorem tells us the
condition of the existence of a variational principle for a given differential (or almost
any kind of) equation (see for example in [?, ?]). The application of that theorem
shows clearly that a lot of important equations in physics do not have a variational
formulation.

For example if a differential equation contains a first order time derivative then
we cannot construct a variational principle without any further ado. The parabolic
transport equations of nonequilibrium thermodynamics or the Maxwell equations
are good examples here. Fortunately we know well that for the Maxwell equations
the introduction of new variables (the scalar and the vector potential) can help
in some cases. Several other ideas and tricks exist to circumvent the mathemati-
cal condition. Especially the field of nonequilibrium thermodynamics is a parade
ground of the different methods. A collection of them is given for example by
Ichiyanagi [?] or by Vén and Muschik [?]. The second paper concentrates on the
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mathematical structure of these variational principles and methods and proposes
the following classification (Fig. 1):

Variational methods for non-potent operators

/ \

"Hamiltonian methods’ "Modifications’
Additional Variable Modified
variables trans formation operators
A
Integrating Modi fied
operator function spaces
Figure 1

There are two main construction schemes:

— The Hamiltonian methods result in ’hamiltonian’ or ’true’ variational prin-
ciples for an equation that is (almost) equivalent with the original one.
They are called ’true’ because they result in a Lagrangian from where we
can get Euler-Lagrange equations applying the standard methods without
any further mathematical or physical trick.

— The Modifications construct variational principles for a modified equation
which, instead of being equivalent, is closely related to the original one.
Therefore the principles coming from these methods are sometimes called
‘quasi-variational’ ones.

Methods from both groups can be useful tools in diverse physical theories.

In this paper we will show that all of the '"Hamiltonian methods’: the method of
additional variable, integrating operator and variable transformations have a com-
mon origin, they can be considered as particular cases of a generalized Hamiltonian
formalism.

In the second section we summarize the essence of ’true’ variational procedures
and for the sake of better understanding we use a special form of the starting oper-
ator (and equation). In the third section we will show the common origin of these
methods. The fourth and fifth section emphasizes some other aspects of the com-
mon origin. The sixth section gives a construction algorithm. The seventh contains
an example from a field of physics where some variational principles are well know
but the original equations contain first order time derivatives; we present different
variational principles for the Maxwell equations. The eights section contains dif-
ferent variational formulations for the extended heat conduction equation, because
this equation means always a challenge for any construction method. In the last
section there is a discussion.
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2. CONSTRUCTION METHODS

A convenient mathematical frame of our investigations can be if we suppose
that the basic variables of our starting equation and of the following variational
principles are elements of a Banach space. This is a restriction, but enables a
concise mathematical formulation and we can concentrate on the physical outcome.

Here and in the following B denotes a real Banach space, B* is its dual (the space
of continuous linear functionals on B); the bilinear map of duality will be denoted
by B* x B—= R, (p,z) — (p, z).

Let © : B — B* be a continuous mapping. A variational principle shall be
formulated for the equation

(peB)?  O(p)=0.
Let us recall some necessary mathematical tools:

Definition 2.1. Let U be an open subset of B. A mapping © : U — B* is
called potent on U, if there exists a differentiable function S : U — R such, that
DS(p) = O(p) for every ¢ € U. Then S is called the potential of ©.

Here DS denotes the strong or Fréchet derivative of the functional S. If B is a
function space than we call a potential variational.

Theorem 2.1. (Helmholtz-Volterra-Vainberg) If U C B is starlike, the function
© : U — B is continuously differentiable and DO(p) € Lin(B,B*) is symmetric for
all p € U, then © is potent on U.

This theorem can be considered as a generalization of the well know fact, that a
force field’ is ’conservative’ if and only if its curl vanishes, that is a differentiable
R3 — R3 function has a potential if and only if its derivative is symmetric on an
appropriate set.

The theorem (2.1) give us a method to decide whether we can formulate a vari-
ational principle for a given equation or not. We should take the operator in the
equation and if its derivative is symmetric then there is a hope to find a variational
principle for the equation.

This is only a hope, because a variational principle in physics is an intuitive
notion from several different points of view:

— The equation itself is a source of uncertainty. We consider two equations
equivalent if they have the same solutions. From that point of view two
operators with the same kernel are equivalent, too.

— One usually does not specify exactly the corresponding function spaces, the
domain and the range of the operator in the equation. If the corresponding
equation is a partial differential equation then the particular problem fixes
the boundary or/and initial conditions, therefore the proper domain and
range of the operator.

— The topology on the function space, the exact meaning of the differenti-
ation is undefined, too. If we have a Hilbert space instead of a Banach
space, the situation becomes simpler. Some considerations of the mathe-
matical meaning and the correspondence between the different derivatives
and variations, the role of the Hilbert space, etc. is given in [?]. A lot of
other versions of the theorem (2.1) are possible.
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The construction methods do not care about the lack of a rigorous mathemat-
ical formulation. If we are able to accomplish the derivations, and construct the
corresponding variational potential, then according to the known and well elabo-
rated examples we can strongly hope that this potential will be the core of any
future stronger mathematical treatment. In the following we avoid the usage of
very much mathematics, and restrict ourselves to the level of exactness accepted in
the treatment of variational principles in physics.

In this section we suppose that our starting equation for which we want to give
a variational formulation is given in the next simple form:

(2.1) O(p) = Lifi(p) =0

where ¢ € B, n € N and f;: B — B are functions, L; : B — B* are linear operators.
Here and in the following we use the convention of Einstein for summation with
double indexes. Let us remark that we do not distinguish in the notation the
functions defined on function spaces, and the functions on real numbers. In this
paper the functions deserve more attention therefore we usually give their domain.

We will see in the next sections, that this form of the equation is general enough
to construct variational principles for a lot of important differential operators, and
its special form gives some serious advantage in the practical applications.

Now let us suppose, that © does not have a symmetric derivative, therefore we
need some tricks to get a variational principle. Three basic tricks are known:

2.1. Method of variable transformation. [?, 7]

In this method we exploit that from a physical point of view two equations are
equivalent if they have the same solutions.

We introduce a new variable £ € B into our equation and after that we try to
eliminate our original variable ¢ considering some special conditions: we require
that our original variable be a function of the new independent variable &, ¢ = p(€),
and we want © o ¢ to be a potent operator. The following considerations give
us ideas to find an appropriate ¢. We are looking for a real valued function S
of the two variables ¢ and £ such that the variational potential have the form

S(8) = S(& #(8))-

Moreover, we require that

(2.2) 018, ¢) = Lifi(y)
(2.3) S(€, ¢(£)) 0,

for all possible ¢ and €. Here d; means a partial (strong) differentiation according
to the ith variable of the function. The general solution of the first simple ”partial
differential equation” gives that:

(2.4) S(&, @) = (Li€ fi(w)) — F(p).

where F' is an arbitrary (differentiable) function, L} denotes the transpose of L;.
In this case equation (2.3) determines ¢(§) by the implicit relation

(2.5) (Li€, Dfi(p)) — DF(g) = 0.

If we are able to determine ¢ from (2.5) (with an appropriate choice of F'), then

S(&) = S(&, ¢(€)) = (Li€, file(£))) — F(e(8))
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is a variational potential of a ”"hamiltonian” variational principle for ¢ and if we
require the stationarity (vanishing derivatives) we get the following equation:

Lifi(¢(€)) =0,
which can be equivalent to (2.1) if ¢ is injective.

The solution of (2.5) can be simplified if the elements of our Banach space B are
functions of n real variables, the functions on B are given by composition, i.e. (by
a little abuse of notations) f;(¢) = fi o and the variational potential can be given
in the following integral form

(2.6) S(€.0) = / (LE() - filo(@)) — Hig(x))) da,

where - denotes the scalar product in R” and [ H(p(x))dx = F(p). We can intro-
duce the Lagrangian

(2.7) L(& ) = Li& - filp) — H(e)

This special case is general enough to treat almost all differential equations
of classical physics, where the physical quantities are represented by functions of
several real numbers. Usually one introduces a Lagrangian [ in a narrower sense
than L:

‘C(ga (P) =lo (LT& ) L;kav 90)'

This composition form is important to preserve the form of the Euler-Lagrange
equations, but it would be too cramped for our further purposes.

In the following we omit the symbol o of composition and we will call the left
hand side of the Euler-Lagrange equations as “variation’ and ’‘partial variation’ of
the Lagrangians, denoting them by a ”7¢”. The partial variation of the Lagrangian
(2.7) by  results in the special form of the condition (2.5)

(2.8) 5. L(&, ) = L& Dfi(p) — 6H(p) = 0,
for determining ¢. A ’variation’ is not a derivation because the elementary algebraic
properties of a derivation (Leibnitz rule) can be violated.

We emphasize again that here we applied mathematical formulas in a loose sense;
their exact meaning would require a bit of more investigations.

A simple example helps us to grasp the meaning behind the formulas:

Example 1. If our equation for which a variational principle to be constructed is:
(2.9) x e CQ([fl,tQ],R)? T+ 1z =0,
then the appropriate form, how a variational potential is looked for is
t2 t2 .. .
@) sien = [ Lad= [ @@ -6 - h@)a
t1 t1

Here h; : R — R differentiable function. Now the condition (2.8) to determine
z(€) can be written as

If we choose hy(zx) := 12—2 then a solution follows immediately: z(£) =& — &.

Substituting into (2.10), we get the following Lagrangian as a result of the con-
struction o

(€-¢)7?

AGEINRIEES
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Now the corresponding Euler-Lagrange equation is:

€9 —E=i(§) - () =0

Let us remark that here a derivation and a partial integration results together the
'variation’ of the Lagrangian. Here we applied the usual condition that we do not
vary the final and the initial time, more properly: DomfL, C Co([ty,ta], RIE(t1) =
£1,€(t2) = &2,61,62 €R).

We can observe here a Lagrangian with second time derivatives. Here this does
not hurt the causality, because the Euler-Lagrange equation does not contain a
third order time derivative. This is because of the special form of the Lagrangian.

2.2. Method of integrating operator. [?]

In this case we follow a pattern similar to the method of variable transformation.
We introduce a new variable again, denoted by u, but now we try to eliminate this
new variable, not the original one, in the form u = u(y). The variational potential
has the shape S(u(y), ). Then we require that:

(2.11) nS(u,p) = Lifi(p),
(2.12) 02S(u(p), ) = 0.

The general solution of the first simple ”partial differential equation” gives the
same form as in the previous method:

(2.13) S(u, ) = (Liu, fi(y)) — F(p).

Here F' is an arbitrary function as before. In this case equation (2.12) is used to
determine u(¢p):

(2.14) (u, LiDf:(¢)) — DF () = 0.

If we are able to determine u from this equation (F' should be chosen to make it
easy), we can get a "hamiltonian’ variational principle with the variational potential

S(p) = S(ulp), ) = (Liulp), fi(#)) — F(p),

and the following condition of the extremum (as Euler-Lagrange equation):

(Du(p), Li fi(¢)) = 0.

This can be equivalent with (2.1) under some conditions. However, the solution
of (2.14) is far from easy in most of the particular cases.

Ezample 2. An important example of the application of this procedure is the method
of least squares. There we choose our arbitrary function F' in the following manner:

Filg) = 3{Lafile), Lifi(o))

In this case the condition (2.14) gives that u(p) = L; f; () and the corresponding
variational potential is:

So(p) = 5{Lafile), Lufile),

and the Euler-Lagrange equation

LiL;fi(¢) = 0.
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You can observe that now the integrating operator is L}, and the corresponding
operator in the equation above is symmetric, if L; = L*. (For example if the
domain of the L;-s is finite dimensional.) Otherwise other tricks are necessary.

]

Another example can be the differential equation (2.9) in the previous method:

FEzample 3. Now we are looking for a variational potential in the form:

(2.15) Sa(u,z) = /t * ()i = / Pl 4 ) — ()t

t1

The condition to determine u(z) is
0:L3(u,z) =i — 1w — Dhz(x) =0

If we take hg(z) := % then we can get easily u(z) = #+4. The corresponding
Lagrangian

. i+ d)?
£3 (1') = ( 9 ) )
and the Euler-Lagrange equation
d? d
x m—(dtQ dt)(:v—l—x)—O.
You can recognize that here % — % is the ’integrating operator’.

Of course the ’integrating operator’ can be a multiplication with a simple ele-
mentary function, an ’integrating multiplier’, too.

Ezample 4. Let us consider the previous differential equation (2.9), and the vari-
et:iz

35— In

ational potential given in the previous example (2.15). Now let hy(x) =
this case the equation to determine u is

8o La(u, ) =i — i — e'(¥ + &) = 0.

An immediate solution of this equation is u(z) = e'x. Therefore the Lagrangian
from (2.15) is

Ly(z) = etw(i+ &) — g
and the corresponding Euler-Lagrange equation:
e'(@+ i) =0.
The integrating multiplier is e. |

As we emphasized before some difficulties can arise when we leave the formal
ground. A stronger mathematical treatment of Tonti [?] can give us a feeling on
the mathematical problems and their importance in practical applications of this
method.
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2.3. Method of additional variables. [?]

Here, unlike the previous two cases the introduced additional variables are not
eliminated, and we construct a variational potential with the help of them. The
additional variables are usually elements of the dual of our original vector space. A
possible variational potential for (2.1) is:

(2.16) S(p, ") = (@™, Lifi(¢)) + F(p).

Another possible form to get similar Euler-Lagrange equations can be:

(217) Slp.07) = & (e L)) + (L™, Fio)).

where ¢* € B*. Differentiating by ¢* we get back the original equation, differentiat-
ing by ¢ we get the ”dual” equation that is thrown away in most of the applications
[?, 7, ?]. Because of that both previous forms are equally acceptable, furthermore a
simple multiplication of the original equation (the first term in the potentials above)
gives the same result. Sometimes other essentially equivalent variational potentials
are used putting together the two terms and taking into account the properties of
the linear operators L; and L.

Ezxample 5. This method is so trivial as it si seem to be. A variational potential
for the equation (2.9) is

t2
SS(x,x*)z/ 2 (i + #)dt.

ty

The corresponding Euler-Lagrange equations are

i+id=0 a*—a*=0,
the first one is the original equation and we do not need the second one. |

In spite of its simplicity this method is extensively used in particle physics. The
equations of motion for free quantum mechanical particles are first order differential
equations (Schrodinger, Dirac equations, etc..). A Lagrangian of a quantum field
theory usually contains these equations multiplied by the complex conjugate of the
corresponding quantum field (complex Hilbert spaces are considered). However,
there the adjoint equation sometimes has a physical meaning, because there the field
itself is not a direct measurable quantity, we need to construct the corresponding
probability densities.

3. OPERATOR HAMILTONIANS

Let us observe the similar patterns: every method introduces new variables,
one of the variables is eliminated in the first two ones. We eliminate the newly
introduced variable in the method of integrating multipliers and the original vari-
able in the method of variable transformations. Moreover, the assumptions on the
variational potential had similar structure in the two cases. We will see that the
background of these similarities is a kind of Hamiltonian formalism. But before a
more systematic comparison let us repeat here the basic structure of the Hamilton-
ian formalism of classical mechanics of masspoints. We do not give a systematic
treatment but try to emphasize some important issues from our point of view.
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3.0.1. Mechanical Hamiltonians. The Lagrangian of the Hamilton equations of a
mechanical system with the coordinate € R* and momentum p € R* (k € N) is

(31) L(x,p):l(x,a:,p):zpr(x,p),

where H : R¥ x R¥ — R is the Hamiltonian. The Hamilton equations follow after
partial variations of the Lagrangian as Euler-Lagrange equations:

(3.2) 5,L(x.p) = f—%—f@,p):o,
(33) SoLwp) = —p o (p) =0,

If we can eliminate p from the equation (3.2) and can substitute the resulted
p(x, ) function into (3.3), we can get the ’original’ Newtonian equation of motion.

(34> p(‘ra :L’) - alH(l‘,p(I,x)) =0.

Putting the previous expression of momentum into the function (3.1) we get the
following Lagrangian:

(3.5) L(z) = Uz, &) = ip(z, ) — H(z,p(z, i),

This Lagrangian differs from (3.1) in its variables, but the form of the function
is the same L(z) = L(x,p(x,4)). The corresponding Euler-Lagrange equation of
Lis (3.4). Remember all the four different forms of the Lagrangian L L, l~, [. The
functional form is similar, but the domain, therefore the function itself, is different.

Based on the classical formulation above we modify a little bit the previous
scheme to fit our further purposes.

3.0.2. Modified mechanical Hamiltonians. Let us modify (3.1) in the following man-
ner

(3.6) Ly(x,m) =z, &,7) =& - f(7) — Hp(7),

where H,, : R* — R and f : R*¥ — R*. Now the Euler-Lagrange equations give the
Hamilton equations

(3.7) OnLm(x,m) = - Df(r) — DH,,(7) =0,
(3.8) OpLp(z, ) = —Df(m) -7 =0,

and the Lagrangian for the Newton equation is

(3.9) Lon(@) = ln(2,@) = & - f(r(w, 7)) — Hyn(n(a, 2)).

Let us remark, that if we use the traditional definition of the momentum, we get
p=——7p— =fm),

therefore the whole modification can be transformed into a 'normal’, 'mechanical’
formalism, where the Hamiltonian does not depend on zx.

L(x,p) =& -p— H(p).
Here H(f (7)) = Hp (7). i

After these simple examples let us turn back our attention to the construction
methods.
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3.1. Variable transformation. Considering the equation (2.1) with n = 1 we can
observe the similarity of the Lagrangians (2.7) and (3.6).

L) = L€ fl) = M) = Ln(eim) = (= G2) (~(m) = Hom),

the linear operator L corresponds to the time derivative, and the operator H to
H,, the Hamiltonian in (3.6). Moreover we can see that the similarity is more
than formal, (3.6) is a special case of (2.7) Furthermore we can get the following
operator momentum’

_ol(p, &, L7E)
= T*f = f(p).

Now it is easy to recognize in the equations of the construction scheme a Hamil-
tonian like formalism and transform them into the same form. Let us use the
correspondence with the second, modified mechanical system. Here & corresponds
to x, ¢ to m, and our arbitrary function ((¢) is an ’operator Hamiltonian’. The
Hamilton equations for the Lagrange function (2.7) are

0¢L(§,0) = Lifi(p) =0
0o L(E, ¢) Li&- Dfi(p) — 0H(p) =0

This simple observation shows us that in the variational principle construction
method variable transformations our starting equation (2.1) for which a variational
principle needs to be constructed can be taken as the first Hamilton equation (aris-
ing from the variation of the appropriate Lagrangian by the 'generalized coordinate’
¢) in a Hamiltonian formalism. Therefore in this method we try to construct the
Lagrangian formalism from a ’half’ Hamiltonian one. From the second equation,
arising from the variation by m = ¢ we determine how the 'momentum’ depends
on the ’coordinate’ £ (if it is possible), and we can get back (if we are clever) the
Lagrangian of a ’true’ variational problem, with the newly introduced variable &.

There is one important difference between this generalized Hamiltonian formal-
ism and the one in the classical mechanics: there is no formal way from the La-
grangian formalism to the Hamiltonian one: we cannot determine our momentum(s)
(fi(¢)) from the Lagrangian without the knowledge of the Hamiltonian. The reason
is that the role of the ’time derivation’ is not fixed and eventually it is based on the
special properties of a generalized Legendre transformation. But before sinking in
the technical details let us turn our attention to the other two construction schemes.

3.2. Integrating operator. In this case we can recognize similar analogies than
in the previous method. The Lagrangians in the method of variable transformation
and in the method of integrating multipliers are very similar. Therefore we can see
that ¢ corresponds to 7, the operator Hamiltonian is H and the Lagrangian of the
Hamilton equations is

(3.10) L(u, @) = _Z Liu- fi(¢) — H(yp).

The Hamilton equations themselves are

6ul(u,p) = Lifi(p) =0,
6,L(u,0) = Lju-Dfi(p) —dH(p) =0.
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Here u plays the role of a generalized coordinate. This method does not have
a mechanical counterpart, here we should solve the second Hamilton equation for
the ’coordinate’ u to get the function u(y) and put it into the Lagrangian (not into
the second Hamilton equation). In mechanics it would mean that we eliminate the
coordinate from the two Hamilton equations to get one unified equation for the
momentum.

For the modified mechanical Hamilton equations (3.7)-(3.8) with the applica-
tion of this method we should get a function &(7) from (3.7) and put it into the
Lagrangian (3.6). The resulted function is the 'real’ Lagrangian of the method

The corresponding Euler-Lagrange equation is:

8Ly, () = —Da(n)Df(m)7 = 0.

The equation is different from (3.8) as it is expected in this method; an integrat-
ing operator, Dz(w) appeared.

3.3. Additional variables. Here the analogy is not too strict, we can call any of
the variables as a momentum, and our original equation can be any of the Euler-
Lagrange equations, only the even number of the variables gives the feeling of a
Hamiltonian structure. Let us remember, here none of the variables are eliminated,
but we use only one of the final (operator) Hamilton equations.

4. LEGENDRE TRANSFORMATION

We can get a better understanding of the procedure if we investigate the transfor-
mation properties of the variables. The root of the method of variable transforma-
tion and integrating operator is a generalized Legendre transformation. Generalized
in the sense that we are not in a finite dimensional vector space as usual but in an
infinite dimensional one. In finite dimension the Legendre transformation is defined
with a restriction in the space of variables (z1,22) € R¥ x R* (k € N) by the next
system of formulas:

fi(z1) + fa(z2) = Ty -T2,
Dfl(xl) = T2, sz(fvz) =1

where f1, f : R¥ »= R are two times differentiable functions and possibly D?f; # 0
and D?f; # 0. These relation results that the z;, x» variables and the fi, fo
functions cannot be independent. x; and xo are called the Legendre transformed
forms of each other, so do the functions f; and fs. If f; and/or fy are not two
times differentiable or D?f; = 0 or/and D?f; = 0 somewhere in their domain
then the usual properties of the Legendre transformation can be violated, for ex-
ample cannot be involutive anymore (e.g. in this case we cannot apply the implicit
function theorem). This formulation shows well the symmetric character of the
transformation.

In classical mechanics the Legendre transformation is partial only, the Hamil-
tonian is the Legendre transformation of the Lagrangian in the time derivative of
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the coordinates:

(4.1) l(x,a'c)—kfl(x,p) = p-x,
(42) M) = »
(43) S = &

where [,h : RF x RF »= R, and according to our formulas the variables cannot

be independent we should take either @(x,p) or p(x,%). The transformation of

variables results the Legendre transformed form of the corresponding functions.

For example I(z,p) = pi(x,p) — h(z, p) is the Legendre transformed form of I(z, ).
We should not mix the different forms of the Lagrangian:

L(x) = L(x,p(x,2)) =(z,z) = l(z, 2,p(x, ) = p(z, 2)E — h(z, p(x, T)).

The functions given on function spaces are denoted by capitals, and the ones on
the space of coordinates by tilde (they are independent of the momentums). Hamil-
ton equations are the consequence of the variational properties of the Lagrangian
l(x,2,p) = p& — h(x,p). The variation of the Lagrangian lN(av7 z) gives the Newton
equation.

In the construction methods we can recognize a generalized Legendre transfor-
mation. Let us start from Lagrangian (2.7). In this case we can give a Legendre
transformation by the next formulas

(4.4) L) +H(p) = L& fily),
(4.5) 5eL(€) = Lifily),
(4.6) SoH(p) = L;i&-Dfi(p),

You can observe that here the derivations are replaced by variations (see 2.1).
We get an easy and more 'mathematical’ application if we apply the Legendre
transformation to the variational potential instead of the Lagrangian. In that case
the derivations are normal or ’strong’ derivations. However, this definition is more
transparent from a ’physical’ point of view, but in this case the change of the
variables requires a more profound investigation, the two times ’variability’ does
not give any condition.

Now it is easy to see that the Lagrangian L alone does not determine a momen-
tum: we should know the linear operators L; (and the functions f;), too. Moreover,
here, contrary to the mechanics, the parallel usage of the derivation-variation does
not appear: only variation is used for the change of variables and also to get the
equations. Therefore there are only two kinds of Lagrangians: £ and L.

Here the notation of the method of variable transformations has been used, if
we replace the variable & by u then the same can be said on the structures in the
integrating multiplier method.

5. A SCHEME OF CONSTRUCTION

The previous observations on the Legendre transformations enables us to give a
simple way of the potential construction with variable transformation.
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Our starting equation is again (2.1). Let us search the Lagrangian of the varia-
tional potential as a function of the new variable £ in the next form:

L£(&) = U(L;¢).
If we suppose that this Lagrange function was given by (traditional) Legendre
transformation, we can get the following relations

(5.1) DI(L§) = 0il(L;€) = [i).

Here [ : R »— R and £ : By — B,. These relations are necessary to give back
the original (2.1), as you can check by the variation of the Lagrange function

Sel(L;€) = Lidil(LLE)

Now we do not need to solve the equation (2.8), the condition of contact, we
can construct the solution immediately. (That is actually a way of the solution.)
The variables of the Lagrangian [ are not independent any more, the relations (5.1)
results n — 1 constraints. If the functions f; are invertible these constraints are

given by ¢ = fi H(A(L1€)) = ... = £, (9ul(L}))-

Ezample 6. Let us see again our simple example equation (2.9). In this case we are
looking for a Lagrangian in the form I(—¢,£) . The variation by & gives that

doyl | d?0yl
at ' dt?

This can be the original example equation (2.9) if Ol = 8,1 = . Applying this
constraint to [ we get
[(—6.€) =1(-¢+6).
_ The form of the function z(£) depends on the choice of the otherwise arbitrary
l:

(&) = (DI)(€ = §),
[

where the dash denotes the differentiation. If
Lagrangian in the example 1.

= id%/2 we can get back the

Remark 5.1. Nonlinear equations The practical applicability of the variable trans-
formation method is not so easy as you can think after the previous considerations.
The special form of the starting equation means a serious advantage in the con-
struction.

Remark 5.2. Method of integrating multipliers The similar structure of the equations
give us a feeling that an appropriate Legendre transformation can result a direct
procedure to give the Lagrangian as in the method of variable transformation.
However, in this case the final equation is unknown, therefore the interpretation of
the different terms in the Lagrangian (3.6) does not yield a similar simplification.
But we usually do not need it at all, because the solution of (2.5) is usually more
easy for u (or £ in the variable transformation method) than for .
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6. GENERAL CONSIDERATIONS

Let us see shortly what can be said in the general case when our starting equation

is ©(p) = 0.
Now a general form of a variational potential is [?]:
(6.1) 5(&,¢) = (£,0(9)) — F(p),

for both methods. If we want the derivatives of the function S to be zero according
to its different variables we get

(6.2) 9eS(E9) =0 — BO(p) =0,
(6.3) 9,5(5,0) =0 — (£, DO(p)) — DF(p) = 0.

In the method of variable transformations we want to get a function ¢(§) from
(6.3). If we have it then our variational potential will be:

Sun(€) = S(&, p(6)) = (€, 0(p(8))) — Flp())-

The Euler-Lagrange equation for this potential is (6.2).
In the method of integrating multipliers we want to get a function £(p) from
(6.3). If we have it then our variational potential will be:

Sim(9) = S(£(0), ) = (£(),O(9)) — F(g).

In this case we can get the Euler-Lagrange equation from
(DE(), ©()) = 0,

according to the derivation of S;,,.

In both cases it is easy to recognize a generalized Legendre transformation in the
background, where one of the variables is £ and the other variable, the corresponding
"generalized momentum’ is ©(¢). In the special 'almost linear’ case treated in the
previous sections we can find a geometric meaning of the procedures: the envelope
of hyperplanes is connected to the Legendre transformation.

7. VARIATIONAL PRINCIPLES FOR THE MAXWELL EQUATIONS

In this section we give example applications of the variable transformation method.
We will show how the choice of the vector and scalar potentials and the choice of
a gauge in the Maxwell equations can help to transform them into a system of
equations that have a variational formulation.

First of all we remark, that there are a lot of different forms and interpretations
of the Maxwell equations in the different fields of physics. For example we know well
that the selection of the independent variables depends on the problem considered,
we can use the equations to determine the sources (charge density and the electric
current) from the fields, or the fields from the sources. Moreover we know well how
the problem of the interaction of the matter and the electromagnetic field in classical
electromagnetism is confused and poorly understood [?, 7, ?]. Furthermore, even
if we are dealing with a problem where the sources are given and the fields are the
independent variables, we can find different forms of the equations, depending on
the considered polarization phenomena. In this case we know that the Maxwell
equations are first order non-potent equations in their original form. Therefore
traditional variational principles introduces the scalar and vector potentials and
usually do not consider any polarization. The variational principle that appears in
this field is the best example for the (unintentional) use of the method of variable
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transformations. However, the method can be extended for more general equations
to consider different polarization effects [?].

In the following we will construct variational principles for three different forms
of the Maxwell equations with the help of variable transformation method. First it
is done for the equations with sources with linear polarization, to see the relation
between the ’potentials’ introduced for variational purposes and the traditional
scalar and vector potentials. The second example gives variational principles for the
whole system of Maxwell equations with linear polarization. In the last example we
construct variational principles for the Maxwell equations without any polarization
to show that the construction method does not require a closed or soluble system
of equations.

7.1. Traditional potentials and variational principles. In this case we con-
sider the next system of equations for which a variational principle is to be con-
structed:

(7.1) vV-E = 2
€

E

(7.2) VxB = uj+eu%—t.

Here the electric field strength E and magnetic induction B are considered as
function RxR3 »— R3, where spacetime is represented by RxR?. ¢ denotes the time,
€ and p are the caonstant scalar electric permittivity and the magnetic permeability
respectively. The charge density p and the current density j are spacetime functions.
We remark that here and in the following all of the equations are given by an inertial
observer [?, ?].

A little rearrangement of the terms is necessary to get the traditional potentials
directly:

(7.3) —V-(E)+p = 0,
(7.4) V><<]3>—'—886;E - 0.

Let us recall that only the solutions of the Maxwell equations are interesting
from a physical point of view. This solution does not change, with the previous
transformation but the operator of the equation will be different if we change the
sign or multiply the equation with a number!

Now we apply the method of variable transformations according to the procedure
described in section 5 . We introduce a scalar valued function ¢ for the equation
(7.3) and a vector valued function A for the equation (7.4). After the recognition
of the different linear operators we are looking for a Lagrangian in the form

- ~ 0A
(7.5) F(6,A)=f(V$,6,V x A A, —5),

where F is a multivariable function on the appropriate domain. Let us remember
that here the different variables were introduced for the different terms in the
equations (7.3)-(7.4) according to the basic rules given below. The following adjoint

differential operators are used: (—V:)* =V, (=2)* = & and (Vx)* = Vx. Now



