
1 INTRODUCTION

In continuum physical theories the complex
mechanical properties of material are described by
constitutive functions. One of the basic construction
methods to get reasonable constitutive functions is
based on the Second Law of thermodynamics. The
material equations have to be compatible with the
Second Law in every system where dissipation
occurs, including fracture and failure of rock
materials, too. Here (of course) thermodynamics is
understood not only as a theory to deal with thermal
phenomena and temperature changes, but as the
theory dealing with the stability of materials. In this
respect Second Law is understood as a requirement
of stability, restricting the possible material
equations of all media.

In rock mechanics the pure mechanical properties
are modeled by continuum mechanical methods, and
even the violations of material stability are
understood in most cases as pure mechanical
phenomena using fracture mechanics as modeling
tool. Fracture mechanics deals with holes (cracks)
and discontinuities embedded in an ideal mechanical
continuum. Several works use statistical methods to
understand the interaction and interlocking of cracks
in the mechanical continuum. In rocks damage
processes include not only microcracking and
interlocking of cracks but several other different
mechanisms, therefore the applicability of this kind
of statistical considerations is questionable. To
understand the appearing broad range of different
phenomena requires to apply different

phenomenological methods and to understand, in
what sense could be the different approaches
unified. Some new developments in modern
nonequilibrium thermodynamics give a hope to
deepen our understanding of the role of the Second
Law in mechanical modeling and to extend the
existing models to give simple descriptions of
several related phenomena.

Failure and change of elastic properties are
treated as independent phenomena in mechanics.
The situation is similar in the theories of plasticity,
where the yield criteria is considered to be
independent on elastic properties of the material (but
not independent on the Second Law). Continuum
damage mechanics (see e.g. Krajcinovic 1996) is a
theory motivated by the need of unification of
failure and nonlinear elasticity. The original idea is
that growing damage can lead to failure. However,
after some initial attempt the researchers in damage
mechanics gave up to find a theoretical connection
and nowadays the damage surfaces  (critical
damage) are given independently on the change of
mechanic properties.

In this short paper we will show that a connection
can be found, if the foundations of the underlying
nonequilibrium thermodynamic theories are
investigated. Failure and fracture can be considered
as a kind of material instability. Moreover, we can
use similar concepts and methods to the case of
phase transitions in fluid and gaseous bodies. As
particular applications we will show how the
classical Griffith concept (and all the so called
energy methods) includes thermodynamic instability
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and show, how other specific rock mechanical
failure criteria can be understood as violation of
thermodynamic stability. At the end a
thermodynamic improvement of the empirical
criteria of Lade is given using the ideas above and a
simple particular model.

2 DYNAMIC AND THERMODYNAMIC
STABILITY

In nonequilibrium thermodynamics the Second Law
introduces the entropy function as the manifestation
and theoretical tool to deal with the stability of
equilibrium. There are two different aspects to be
considered here:

Thermodynamic stability; the convexity of
entropy function. This is a static stability
requirement that ensures the stability of equilibrium
states of matter in case of small external
perturbations of the thermodynamic state,
independently of the particular dynamic equations.
Phase boundaries appear where thermodynamic
stability is violated.

Dynamic stability of thermodynamic equilibrium;
positive entropy production, where particular
dynamic equations of matter are considered. The
connection between the two stability concepts is
clear in case of the so called ‘equilibrium’ systems,
where the state variables and the relations between
them are those that can be measured in equilibrium.
Thermodynamic and dynamic stability together
restrict the possible functional form of the
constitutive functions to give the asymptotic stability
of specific equilibrium states (Glansdorff and
Prigogine 1971, Gurtin 1975). For homogeneous
(discrete) systems this idea was developed in detail
giving a remarkable conceptual background of the
Second Law (Matolcsi 1992, 1996a, b).

The situation is more involved in  nonequilibrium
systems where the hypotheses of local equilibrium is
violated, the ‘equilibrium’ state variables are
inadequate to characterize the processes (Ván 1995).
For systems with internal variables (an important
class of nonequilibrium systems) the first
requirement, the thermodynamic stability results in
the desired theoretical tool to describe material
instability of mechanical origin. Let us consider a
simple mechanical system, where the traditional
extensive state variables the specific entropy s and
deformation ε are supplemented by a set of internal
variables =(αi, i=1,…,n). Each internal variable
can be a tensor of any order. Different variable sets
and thermodynamic potential functions are used in
these kind of investigations. In mechanics
traditionally we can meet the Helmholtz free energy
φ(T, , ) and the Gibbs free energy ψ(T, , ), too.
The corresponding variables are the temperature T,
deformation and  stress  and  respectively. The

two free energies and the internal energy e(s, , )
are related by partial Legendre transformations:

:++=+= TsTse ψφ ,

where  s is the entropy.
The thermodynamic stability appears as the

requirement of concavity of the entropy function. A
concave entropy results in conditions for the other
thermodynamic potentials, too. In case of pure
mechanical processes, when temperature is constant,
concave entropy gives a convex Helmholtz free
energy. The requirement of a convexity in the
relevant variables for a two times differentiable
Helmholtz free energy can be written as
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for every (d , d ). Here a notation from the
mechanical literature is applied where d  and d
are arbitrary vectors from the linear spaces where
the deformation and internal variables are defined
respectively. D2φ denotes the second derivative φ.
To investigate the inequality (1) Sylvester condition
for symmetric matrices can be applied. It is
supposed that the functional form of the entropy
(and the free energies consequently) does not
contain differential or integral operators. However,
the process dependence of the corresponding
equations is considered through the introduced
internal variables. Therefore the resulted stress-
strain relations will be rate dependent, but a rate
form notation is not necessary and could even be
misleading.
A (partially) convex Helmholtz free energy gives
requirements for the Gibbs free energy, but these
requirements cannot be expressed as a simple
concavity or convexity for all variables (one can say
that Gibbs free energy is convex in the internal
variables and concave in the other ones), therefore
sometimes a conversion to Helmholtz free energy
can be useful for thermodynamic stability
calculations.

The subset of the state space where the conditions
of thermodynamic stability are satisfied determines
the static stability domain of the material. Outside
this domain the material is unstable, without further
constraint fails. From a physical point of view the
situation is analogous to phase boundaries in case of
fluid bodies but in solid bodies the observed
phenomena can be qualitatively different. Here
failure changes the properties of the material and the
internal interactions (for example the cohesion
vanishes and dry friction will be the dominating
dissipation mechanism). Moreover, in this case all of



our previous implicit assumptions on the
homogeneous representative volume elements can
become meaningless. In solid materials we cannot
speak unambiguously of an other homogeneous
phase after the loss of thermodynamic stability, in a
continuum description the phases are immediately
localized. This is best seen if we give a closer look
at the condition of stability loss and recognize that
(1) can be interpreted as a generalization of the
classical Hadamard-Hill localization condition of
shear banding. Using purely mechanical arguments
and investigating jump surfaces in the velocity field
shear banding appears in the direction n if

0)det( =⋅⋅ nCn , (2)

where C is the fourth order stiffness tensor, that can
be given as the second partial derivative of the
Helmholtz free energy
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(Hadamard 1903, Hill 1962, Asaro & Rice 1977)
We can see that C is the (1,1) submatrix in our

general thermodynamic stability condition (1). A
necessary condition of this submatrix to be positive
definite is closely related to the mentioned classical
localization condition of Hadamard and Hill, the
later gives the boundary of the stability domain
when equality holds. A more general requirement of
positive definite elastic moduli can be derived from
energetic-stability considerations resulting in a
localization condition. This general energetic
localization condition considers shear-banding and
cleavage type localization instabilities, too (see e.g.
Krajcinovic 1996 and Broberg 1999). Our condition
(1) can be considered as a generalization of these
classical requirements (all energetic type
considerations can be interpreted as disguised
thermodynamic train of thoughts).

Therefore the loss of thermodynamic stability, at
least in some cases, does not result in a
homogeneous change in the material but indicates
the appearance of some localized patterns, for
example shear bands. Hence the analogy with phase
transitions can be misleading, instead of phase
transitions we can call the related process as phase
breaking. Of course more developed localization
models considering the thickness of shear bands and
other gradient dependent nonlocal effects can also be
introduced.

Internal variables give the basic theoretical
concept to thermodynamic motivated approaches of
plasticity, damage mechanics or rheology. In this
case the fundamental Helmholtz relation expressed
by the Gibbs free energy ψ(T, , ) for a
homogeneous representative volume element can be
written as

A ddsdTd ⋅−−−= :ψ , (3)

where T is the temperature,  and  are the stress
and the deformation respectively, the double dot
denotes the trace of the product of the two tensors
and A is the affinity conjugated to the internal
variables  This relation is a short and physically
interpretable version of the potential property of the
free energy. That property can be expressed also
with partial derivatives
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Before continuing to discuss the consequences of
thermodynamic stability and other static phenomena,
we give some hint on the dynamics emerging from
thermodynamic considerations. The other part of the
Second Law beyond the thermodynamic stability is
the requirement of positive entropy production. That
postulate results in prescriptions and some very
particular forms of the possible dynamic equations.

For solid bodies with small deformations the
production of entropy multiplied by the temperature
and written in terms of Gibbs free energy reads as
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 Here the dot above the quantities denotes
substantial time derivatives. It is easy to identify
thermodynamic currents and forces in the above
expression  and give explicit relations for the
dynamics of the different introduced quantities. On
the other hand  additional physical restrictions seem
to be reasonable in most of the practical situations in
mechanics. One of them that the mechanical
equilibration is faster than the evolution of the
internal variables (the terminal velocity of crack
propagation in ideal elastic materials is not more
than the half of the sound velocity). In this case we
can suppose a mechanical equilibrium

∂
∂−= ψ

. (6)

The dynamics of the internal variables is
determined as follows (as a first approximation)
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where L is a material parameter, characterizing the
speed of the damage propagation.

To investigate the theoretical and experimental
relevance of this kind of dynamics is not the subject
of this short paper. We remark here that typical
damaging and failure mechanisms observed for
brittle rocks (Bieniawski 1967 or Martin and
Chandler 1994) can be modeled by a single vectorial
internal variable (supposing that microcracking is



the dominating internal mechanism) and few
material parameters.

A SIMPLE MODEL FOR BRITTLE FAILURE

In this section a simple model of brittle material is
suggested and the  static stability properties are
investigated. For brittle materials the microstructure
is formed by microcracks, that are growing and
interlocking with increasing pressure. In case of
brittle rocks with grains the structure of microcracks
is not so simple as for homogeneous materials.
According to the compressive stresses they can be
intergranular and also can be formed inside the
grains. The mode of failure depends on the direction
of the loading for slow and also for fast processes.
Therefore, it seems to be reasonable to introduce a
single vectorial internal variable that incorporates
the average properties of microstructure. In this case
we can interpret it as the average of the microcrack
vectors and we will call it as damage.

To deal with the static properties of particular
materials a reasonable form of one of the potential
functions is necessary. According to the experience
and traditions a second order polynomial is
suggested for the Gibbs free energy. Using the
symmetry requirements for isotropic materials we
can get the following functional form
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Due to the isotropy only ten material constants
appear and only five of them can be considered as
new. All the terms can be interpreted physically and
measurement methods can be suggested for the
material constants. There are some clues for the
interpretation (a more detailed treatment is given in
Ván 2000).

– The first term represents the energy attributed
directly to the cracks.

− The second term is related to the hydrostatic
energy conservation of the material. δ
characterizes the damage independent and δk
the damage dependent part. Pore fluid
pressure can be a physical mechanism in the
background. (All of the parameters can
depend on temperature and density of the
material.)

− The next two terms are the usual elastic free
energy contributions where µ  and λ are well
known elastic coefficients related to the

Young modulus E and Poisson ratio ν  by
µ=(1+ν)/E and λ=µ/E. kµ and kλ characterize
their damage dependence.

− ⋅ ⋅  is the deformation in the direction of
the crack surface, therefore the sixth term
considers the opening of the cracks.

− The last term contains the square of the
substantial crack vector, therefore it means an
energy contribution necessary for turning the
cracks with the deforming media.

Another clue to the interpretation of the material
parameters can be given by the equation of the
mechanical equilibrium (6) calculating the damage
strain (the residual strain due to the growing
damage).
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Here I is the second order unit tensor and the
circle o  is the usual notation of the tensorial product
in continuum mechanics.

With this particular free energy we can
investigate the stability thresholds suggested in the
condition (1). Calculating the (1,1) submatrix,
related to the localization we can get that in case of
zero damage µ>0 and µ+ν>0.. Calculation of the
damage related (2,2) submatrix we can get the
requirement of thermodynamic stability in case of
zero deformation is ζ>0. On the other hand several
different explicit upper limits can also be calculated
for the damage parameter in case of specific loading
conditions.

This particular Gibbs free energy function can be
considered as a direct generalization of the ideas of
Griffith  in two different ways, applying the two
conditions given in his original paper Griffith 1924.
One of them is if we accept the interpretation of
Rice 1978 and Lawn 1993 and assume that the
energy condition is connected directly to the free
energy. Therefore the free energy governing the
evolution of crack extension is the reversible work
W minus the surface energy (related to the energy
release rate G) necessary for the crack separation.
More properly, in two dimensions for uniaxial
tensile loading and a crack perpendicular to the
loading axis we can write

11111 2),(),( αασασψ GW −= (8)

where α1 is the length of the crack, σ1 is the tensile
stress, W is the reversible work component and the
last term is the specific surface energy. For perfectly
elastic materials we can give the work in a more
specific form
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Here the first term is the pure elastic work, while
the second is the work necessary for the reversible
crack extension (see e.g. the original work Griffith



1924). The expression (8) above is a special form of
the free energy function (7) for this particular
situation, where for example µ=1/2E, kµ=π and the
other material parameters are zero.

The thermodynamic stability condition (1) with
the previous simple Gibbs free energy gives a three
dimensional failure criteria. To check the validity it
is reasonable to consider experiments with similar
general loading conditions, or the related empirical
failure criteria.

The damage (failure) surface of brittle materials
(rocks, ceramics, etc..) has a particular three
dimensional shape in the stress space as one can see
qualitatively on Figure 1. Let us observe the rounded
triangle shape on the octahedral plane (cross section
perpendicular to the hydrostatic pressure line).

The rate dependence of the failure strength
observed in experiments makes doubt that this form
expresses real material properties (Martin and
Chandler 1994), but here we accept it as an
experimental evidence of the time independent
strength surface of brittle materials.

Most of the strength criteria for rocks were
suggested for special loading conditions and only
some of them applies to explain the particular form
of the failure surface. The first and oldest one is the
original two dimensional Griffith criterion based on
theoretical calculations for single cracks embedded
in an elastic domain. Later it was generalized to
three dimension by Murell extending some expected
properties of the failure surface from two into three
dimensions (Murell 1963, Jaeger and Cook 1971).
This criteria suggests a parabolic failure envelope in
case of pressure loading and a constant limit stress in
case of tensile loading (see Griffith 1924).

Figure 1. Failure surface in the stress space according to
experimental evidence (Lade 1993).

Another three dimensional generalization of the
criterion of Griffith was used by Theocaris 1987 in
his Elliptic Paraboloid Failure Criterion. This
criterion suggests an elliptic paraboloid open from
the hydrostatic axis as initial failure surface in the
stress field. It has been proved to be useful to
describe the failure of anisotropic materials and
results in a better fitting than the criterion of
Griffith-Murell (Theocaris 1999). Here the failure
loci are given by the next equation at the stress space

1::: =+ bB .

where B and b are fourth and second order tensors
respectively. They are to be determined
experimentally. The parameters should be given in a
way that the failure loci form a paraboloid whose
axis is the hydrostatic pressure line. Theocaris gives
experimental procedures and calculation methods to
determine the failure loci from the experiments. Let
us remark that the anisotropic property introduced in
this criterion is not necessarily a material
characteristics, because it can arise from an initially
anisotropic damage distribution in case of originally
and materially isotropic base continuum, too. On the
other hand, the smooth paraboloid seems to be a
strong simplification for tensile loadings. It is easy
to see that the criteria of Theocaris can be
considered as a special case of our thermodynamic
condition in case of constant damage and
considering only the (1,1) submatrix of (1).

As a third possibility, the best fitting to the
measured failure surfaces can be achieved by the
criteria of Lade. It is simple and easy to apply,
because contains only three material parameters m,
η1, a and given by the next function in the stress
space
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where I1 = Tr  and I3 = det  are the first and third
invariants of the stress tensor and pa is the
atmospheric pressure. Moreover, because the normal
stresses contain a translation in the stress space
along the hydrostatic axis, the mean stresses i in
the formula (9) should be replaced with ~

i = i + a
pa,  where i=1,2,3. The corresponding material
parameters has been calculated for several rocks
from the available (three dimensional) experimental
data (Lade 1993).

All the three criteria are empirical, they were
suggested without any serious theoretical
justification. In the following we will see that the
thermodynamic stability condition of our simple
model with one vectorial internal variable can give a
comparable fitting, moreover, it has a strong



theoretical background as a direct thermodynamic
generalization of Griffith criteria in three
dimensions.

To demonstrate the differences  a simple example
is given here, based on the experimental data of
Brown performed on Wombeyan marble in biaxial
experiments with brush plattens (Brown 1974).
According to biaxial experiments, contrary to Mohr
assumptions, not only the difference of the biggest
and lowest principal stresses determine the strength
of the rock: the influence of intermediate stresses is
not negligible. Lade fitted his criteria with the
experimental data of Brown (Lade 1993).

Figure 2. Biaxial experimental data, criterion of Lade and
thermodynamic failure envelope.

Figure 2 shows the results of biaxial experiments,
the corresponding fitted failure surface of Lade and
the failure surface proposed by the thermodynamic
stability condition. The empty dots denote the
experimental results and the broken line is the
threshold of the criterion of Lade with the parameter
values m=1.162, η1=601500 and a=38.0. The
thermodynamic criterion results in the three elliptic
curves. Their internal hull gives the boundaries of
thermodynamic stability an denoted by the thickest
line on the figure. The parameters are δ=0,
kδ=10.9976, µ=50000, kµ=0.03, λ=0.14, kλ=0,
ζ=100, β=11.2156, kβ= 0 and γ= 0.0353352. Only
three parameters are used for the fitting, the other
non-zero parameters are calculated from the known
properties of the material or estimated suitably. The
initial damage vector is chosen as

=(0.003,0.003,0.003), supposing a uniform
directional distribution. The chosen particular values

are not too important, because the  failure surface is
independent on the damage if it is sufficiently small.
It can be seen on the figure that the thermodynamic
condition gives a piecewise continuous failure
threshold.

Let us observe some important qualitative
differences between the empirical and the
thermodynamic criteria. The thermodynamic failure
surface is a cross section of several surfaces,
therefore it has some vertices. One of the vertices is
on the hydrostatic axis for tensile stresses. It is
similar to the construction of the Griffith-Murell
criteria, where also some cross sectional surface was
proposed (a very special one). The published data on
this experiment of Brown is not sufficient to
determine all of the thermodynamic parameters (for
the fitting we have chosen a suitable parameter set,
considering some physical mechanisms).
Measurements to determine the material parameters
for a brittle rock and the compatibility with the
predictions on the dynamics are under way.

CONCLUSIONS AND DISCUSSION

In this paper a theoretical concept of
nonequilibrium phase breaking is proposed as a tool
to extend the frames of the phenomenological
thermodynamic modeling. As an application of this
idea a particular phenomena, the microcrack induced
damage is investigated in detail. A simple internal
variable theory is suggested, using a single vectorial
internal variable and based on the most general
second order approximation of the Gibbs free
energy. We have seen that the model can be
considered as a generalizations of the classical
energetic Griffith model of failure. The boundary of
the domain of  thermodynamic stability is proved to
be a generalization of traditional mechanical
localization criteria. A comparison with empirical
failure criteria showed that this simple model with
thermodynamic stability results in the best fitting to
the available experimental data in a three
dimensional stress space.

The concept of failure deserves some attention
from an experimental point of view. The material
can be kept together even when its internal structure
is completely destroyed. First it was pointed out by
Orowan 1960 analyzing the classical experiments of
von Kármán with Carrara marble. The marble
became powdered, chalk like with large lateral
pressures, which indicates a change in the internal
structure. In this case the phase breaking is closely
related to a real phase transition, and supposedly
another free energy can be introduced to characterize
the powdered, frictional state.

The dynamical properties of the phenomena are
not investigated in this paper, but it is clear that our
simple model can be considered only as a first

σ1

σ2



approximation. The orientation sensitivity of the
Kaiser effect, the fact that the microcracking is
initiated separately in different orientations is surely
not included in our model with a single averaging
type internal variable. However, the present study
demonstrates, that a nonequilibrium  thermodynamic
approach to the description of the evolution of the
whole microcrack distribution seems to be
promising.
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