List of Publications

    Citations were last updated on December 29, 2017. For more up-to-date info please visit Google Scholar.


    SUMMARY Total Independent Citations Conference Talks Seminar Talks Posters
    Research Papers 18 87 - - -
    Conference Proceedings 6 1 3 - 2
    Presentations 34 - 6 21 7


    Papers in Research Journals: 18

    1. Volume dependent extension of Kerr-Newman black hole thermodynamics,
      Tamás S. Biró, Viktor G. Czinner, Hideo Iguchi and Péter Ván, Phys. Lett. B 803 (2020) 135344,
      Impact factor: 4.384   arXiv: 1912.04547
    2. Black holes, gravitational waves and fundamental physics: a roadmap,
      Leor Barack et al, Class. Quantum Grav.,36 14, 143001, (2019)
      Impact factor: 3.283   arXiv: 1806.05195
    3. Black hole horizons can hide positive heat capacity,
      Tamás S. Biró, Viktor G. Czinner, Hideo Iguchi and Péter Ván, Phys. Lett. B 782 (2018) 228-231,
      Impact factor: 4.254   arXiv: 1712.09706
    4. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics,
      Viktor G. Czinner and Hideo Iguchi, Eur. Phys. J. C (2017) 77:892,
      Impact factor: 5.172   arXiv: 1702.05341
    5. Independent citations: 1

      1. A. Majhi, Phys. Lett. B 775, (2017) 32-36.

    6. A zeroth law compatible model to Kerr black hole thermodynamics,
      Viktor G. Czinner and Hideo Iguchi, Universe 2017, 3(1), 14,
      Impact factor: 1.752
    7. Independent citations: 2

      1. H. Mordapour et al., Phys. Rev. D 96, 123504 (2017).
      2. A. Bravetti et al, Phys. Lett. B 774 (2017) 417-424.

    8. Relative information entropy in cosmology: The problem of information entanglement,
      Viktor G. Czinner and Filipe C. Mena, Phys. Lett. B 758 (2016) 9-13,
      Impact factor: 4.807   arXiv: 1604.06947
    9. Independent citations: 7

      1. P. Biswajit, MNRAS, 471, L77 (2017).
      2. JIN Shan, JIN Zhigang, SU Yishan, Systems Engineering and Electronics, 2017, 39(3): 627-633.
      3. M. Farahmand et al, Int. J. Mod. Phys. A 32 (2017) 1750066.
      4. S. Capozziello and O. Luongo, arXiv:1704.00195.
      5. N. Komatsu, Eur. Phys. J. C (2017) 77:229.
      6. S. Huang et al, J. Intell. Manuf. (2017).
      7. D. Anselmo et al, Phys. Lett. A 380 (2016) 3454-3459.

    10. Rényi entropy and the thermodynamic stability of black holes,
      Viktor G. Czinner and Hideo Iguchi, Phys. Lett. B 752 (2016) 306-310,
      Impact factor: 4.807,   arXiv: 1511.06963
    11. Independent citations: 10

      1. H. Mordapour et al., arXiv:1711.10336.
      2. H. Mordapour et al., Phys. Rev. D 96, 123504 (2017).
      3. V.B. Bezerra et al, Phys. Rev. D 96, 024018 (2017).
      4. N. Komatsu, Phys. Rev. D 96, 103507 (2017).
      5. A. Majhi, Phys. Lett. B 775, (2017) 32-36.
      6. A. Bravetti et al, Phys. Lett. B 774 (2017) 417-424.
      7. N. Komatsu, Eur. Phys. J. C (2017) 77:229.
      8. A. Dey, P. Roy, T. Sarkar, arXiv:1609.02290.
      9. D. Anselmo et al, Phys. Lett. A 380 (2016) 3454-3459.
      10. Wen-Yu Wen, Int. J. Mod. Phys. D, 0, 1750106 (2017).

    12. Axisymmetric Dirac-Nambu-Goto branes on Myers-Perry black hole backgrounds,
      Viktor G. Czinner, Phys. Rev. D 88, 124029 (2013),
      Impact factor: 4.864,   arXiv: 1311.6457
    13. Independent citations: 3

      1. A. Nakonieczna et al, JHEP 12 (2016) 064.
      2. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 93, 045018 (2016).
      3. N. D. Pappas, Advances in Black Holes Research, pp. 59-71 (2014).

    14. A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy,
      Tamás S. Biró and Viktor G. Czinner, Phys. Lett. B 726 (2013) 861-865,
      Impact factor: 6.019,   arXiv: 1309.4261
    15. Independent citations: 19

      1. H. S. Gimenes, G. M. Viswanathan and R. Silva, Physica A 494, 331 (2018).
      2. H. Mordapour et al., arXiv:1711.10336.
      3. H. Mordapour et al., Phys. Rev. D 96, 123504 (2017).
      4. N. Komatsu, Phys. Rev. D 96, 103507 (2017).
      5. T. Oikonomou and G. B. Bagci, arXiv:1704.04721.
      6. A. Majhi, Phys. Lett. B 775, (2017) 32-36.
      7. A. Bravetti et al, Phys. Lett. B 774 (2017) 417-424.
      8. N. Komatsu, Eur. Phys. J. C (2017) 77:229.
      9. Z. B. B. de Oliveira and R. Silva, Annals of Physics 375, 227-232 (2016).
      10. A. Dey, P. Roy, T. Sarkar, arXiv:1609.02290.
      11. G. B. Bagci, Physics Lett. A 380 (2016) 2615-2618.
      12. T. Oikonomou and G. B. Bagci, Phys. Lett. A 4 (2017) 207-211.
      13. S. Bian and P. Shang, Commun. in Nonlinear Sci. and Num. Simul. 39, 233-247 (2016).
      14. Wen-Yu Wen, Int. J. Mod. Phys. D, 0, 1750106 (2017).
      15. G. B. Bagci, Physica A 437, 405 (2015).
      16. M. Eune, Y. Gim and W. Kim, Phys. Rev. D 91, 044037 (2015).
      17. E. P. Bento et al., Phys. Rev. E 91, 022105 (2015).
      18. A. P. Santos et al., J. Phys. G 41, 055105 (2014).
      19. W.-Z. Guo and M. Li, Nucl. Phys. B 882, 128 (2014).

    16. Cosmological perturbations from a group theoretical point of view,
      István Szapudi and Viktor G. Czinner, Class. Quantum Grav. 29, 015007 (2012),
      Impact factor: 3.562,   arXiv: 1111.7027
    17. Independent citations: 1

      1. M.C. Ferreira, C.F.B. Macedo and V. Cardoso, Phys. Rev. D 96, 083017 (2017).

    18. A topologically flat thick 2-brane on higher dimensional black hole backgrounds,
      Viktor G. Czinner, Phys. Rev. D 83, 064026 (2011),
      Impact factor: 4.558,   arXiv: 1102.3714
    19. Independent citations: 5

      1. L. Nakonieczny et al, arXiv:1707.02802.
      2. A. Nakonieczna et al, JHEP 12 (2016) 064.
      3. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 93, 045018 (2016).
      4. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 89, 085017 (2014).
      5. Y. Hyakutake, Prog. Theor. Exp. Phys. 3, 033B04 (2014).

    20. Thick-brane solutions and topology change transition on black hole backgrounds,
      Viktor G. Czinner, Phys. Rev. D 82, 024035 (2010),
      Impact factor: 4.964,   arXiv: 1006.4424.
    21. Independent citations: 7

      1. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, arXiv:1711.01114.
      2. L. Nakonieczny et al, arXiv:1707.02802.
      3. A. Nakonieczna et al, JHEP 12 (2016) 064.
      4. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 93, 045018 (2016).
      5. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 89, 085017 (2014).
      6. T. Ishii et al., JHEP 04, (2014) 099.
      7. V. Balek and B. Novotný, Phys. Rev. D 83, 024013 (2011).

    22. Curvature corrections and topology change transition in brane-black hole systems: A perturbative approach,
      Viktor G. Czinner and Antonino Flachi, Phys. Rev. D 80, 104017 (2009),
      Impact factor: 4.922,   arXiv: 0908.2957.
    23. Independent citations: 11

      1. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, arXiv:1711.01114.
      2. L. Nakonieczny et al, arXiv:1707.02802.
      3. A. Nakonieczna et al, JHEP 12 (2016) 064.
      4. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 93, 045018 (2016).
      5. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 90, 125024 (2014).
      6. D. V. Gal'tsov, E. Yu. Melkumova and P. Spirin, Phys. Rev. D 89, 085017 (2014).
      7. Y. Hyakutake, Prog. Theor. Exp. Phys. 3, 033B04 (2014).
      8. T. Ishii et al., JHEP 04, (2014) 099.
      9. P. Biswajit, Phys. Rev. D 87, 045003 (2013).
      10. V. Balek and B. Novotný, Phys. Rev. D 83, 024013 (2011).
      11. K.C. Wong, K.S. Cheng and T. Harko, The European Physical Journal C 68, 241-253 (2010).

    24. Revisiting rotational perturbations and the microwave background,
      Viktor G. Czinner and Mátyás Vasúth, Int. J. Mod. Phys. D 16, 1715 (2007),
      Impact factor: 1.87,   arXiv: 0706.3967.
    25. Independent citations: 1

      1. M. Mars, F. C. Mena and R. Vera, Phys. Rev. D 78, 084022 (2008).

    26. Accelerating expansion of the universe may be caused by inhomogeneities,
      Gy. Bene, V. Czinner and M. Vasúth, Mod. Phys. Lett. A 21, 1117 (2006),
      Impact factor: 1.564,   arXiv: astro-ph/0308161.
    27. Independent citations: 13

      1. D. Vrba, Inhomogeneous cosmological models, Ph.D. Thesis, Charles University in Prague (2014).
      2. N. Riazi, H. Moradpour and A. Sheykhi, Int. J. Mod. Phys. D 23, 1450048 (2014).
      3. P. Ciarcelluti, Mod. Phys. Lett. A 27, 1250221 (2012).
      4. K. Bolejko et al., Structures in the Universe by Exact Methods, Formation, Evolution, Interactions,
        Cambridge Monograph on Mathematical Physics, Cambridge University Press, 2010.
      5. M-N. Célérier, Proceedings of the 11th Marcel Grossmann Meeting,
        Eds.: H. Kleinert, R. T. Jantzen, and R. Ruffini, World Scientic, Singapore, 1837-1846 (2008).
      6. C-H. Chuang, J-A. Gu, W-Y. P. Hwang, Class. Quant. Grav. 25, 175001 (2008).
      7. M. L. McClure, C. C. Dyer, New Astronomy 12, pp. 533-543 (2007).
      8. M-N. Célérier, New Advances in Physics 1, 29 (2007).
      9. Je-An Gu, Mod. Phys. Lett. A 22, 2013 (2007).
      10. M. L. McClure, Cosmological Black Holes as Models of Cosmological Inhomogeneities,
        Ph.D. Thesis, University of Toronto (2006).
      11. Je-An Gu, Proceedings of the VII Asia-Pacific International Conference, 2005,
        Gravitation and Astrophysics: pp. 87-93. (2006).
      12. E. W. Kolb, S. Matarrese, A. Notari and A. Riotto, Phys. Rev. D 71, 023524 (2005).
      13. I. Lovas, Az Univerzum gyorsulva tágul - II., Erdélyi Magyar Műszaki Tudományos Társaság,
        FIRKA (Fizika Informatika Kémia Alapok) 5, pp. 181-185 (2003-2004).

    28. An analytic approach to the late ISW effect in a Λ dominated universe,
      V. Czinner, M. Vasúth and Á. Lukács, Int. J. Mod. Phys. A 20, 7233 (2005),
      Impact factor: 1.472,   arXiv: astro-ph/0503347.
    29. Independent citations: 2

      1. S. Das, T. Souradeep, JCAP 1402, (2014) 002.
      2. O. Al-Khayat, Introduction to the Theory of the Cosmic Microwave Background,
        Master Thesis, University of Oslo (2005).

    30. Covariant linear perturbations in a concordance model,
      V. Czinner, M. Vasúth, Á. Lukács and Z. Perjés, Int. J. Mod. Phys. A 20, 5671 (2005),
      Impact factor: 1.472,   arXiv: gr-qc/0501009.
    31. Independent citations: 1

      1. M. Demiański, Z. A. Golda and A. Woszczyna, Gen. Rel. Grav. 37, 2063-2082 (2005).

    32. C perturbations of FRW models with a cosmological constant,
      Z. Perjés, M. Vasúth, V. Czinner and D. Eriksson, Astronomy & Astrophysics 431, 415 (2005),
      Impact factor: 4.223,   arXiv: astro-ph/0402069.
    33. Independent citations: 4

      1. Krzysztof Glód, Evolution of primary gravitational waves in Friedmann-Lemaitre cosmological models,
        Use of symbolic computational languages, PhD Thesis, Jagellonian University (2014).
      2. R. K. Sachs, A. M. Wolfe, G. Ellis, J. Ehlers, A. Krasiński, Gen. Rel. Grav. 39, 1929-1961 (2007).
      3. V. Trimble, M. J. Aschwanden and C. J. Hansen, Pub. Astron. Soc. Pacic 118, (845), 947-1047, (2006).
      4. M. Demiański, Z. A. Golda and A. Woszczyna, Gen. Rel. Grav. 37, 2063-2082 (2005).

    Refereed Conference Proceedings: 2

    1. Black hole entropy and the zeroth law of thermodynamics,
      Viktor G. Czinner, Proceedings of the VII Black Holes workshop, Aveiro, Portugal (2014),
      International Journal of Modern Physics D 24 (09), 1542015 (2015).
      Impact factor: 1.963
    2. Independent citations: 1

      1. A. Bravetti et al, Phys. Lett. B 774 (2017) 417-424.

    3. Thick Dirac-Nambu-Goto branes on black hole backgrounds,
      Viktor G. Czinner, Progress in Mathematical Relativity, Gravitation and Cosmology, ERE2012,
      Springer Proceedings in Mathematics & Statistics Volume 60, 2014, pp. 223-226.
      Impact factor: ?     Independent citations: 0     arXiv: 1312.2279

    Other Conference Proceedings: 4

    1. An alternative approach to black hole thermodynamics: Rényi entropy and phase transition,
      Viktor G. Czinner and Hideo Iguchi, Proceedings of the 25th Workshop on General Relativity and Gravitation in Japan (JGRG25),
      Eds.: T. Tanaka, N. Seto, H. Nakano, H. Kitamoto, K. Yamada, T. Kinugawa, 2015, Vol. 5, pp. 1249-1255.
    2. Beyond the Dirac-Nambu-Goto approximation in Brane-Black Hole systems,
      Viktor G. Czinner and Antonino Flachi, Proceedings of the 19th Workshop on General Relativity and Gravitation in Japan (JGRG19),
      Eds.: M. Saijo, U. Miyamoto, T. Harada, M. Sasaki, T. Shiromizu, S. Mukohyama, 2009, pp. 133-136.
    3. Perturbations of a cosmological constant dominated universe,
      M. Vasúth and V. Czinner, Proceedings of the 11th Marcel Grossmann Meeting,
      Eds.: H. Kleinert, R.T. Jantzen, and R. Ruffini, World Scientific, Singapore, 2008, pp. 1788-1790.
    4. Accelerating expansion of the universe may be caused by inhomogeneities,
      Gy. Bene, V. Czinner and M. Vasúth, Proceedings of the 7th Hungarian Relativity Workshop,
      Ed.: I. Rácz, Akadémiai Kiadó, 2004, pp. 157-165.

    Conference Talks and Seminars: 27

    1. Nonstandard entropic approaches in black hole thermodynamics and cosmology,
      CENTRA & Department of Physics, IST, University of Lisbon, April 27, 2017, Lisbon, Portugal.
    2. Information entropy in cosmology,
      IX Black Hole Workshop, December 19-20, 2016, Guimarães, Portugal.
    3. Nonextensive phenomena in black hole thermodynamics and cosmology,
      Department of Physics, Nihon University, July 8, 2015, Tokyo, Japan.
    4. Nonextensive thermodynamics and stability of black holes,
      VII Black Hole Workshop, December 18-19, 2014, Aveiro, Portugal.
    5. Applications of nonextensive statistical mechanics to black hole thermodynamics and cosmology,
      Department of Mathematics, University of Minho, December 3, 2014, Braga, Portugal.
    6. Thickness corrections to topology changing brane-black hole phase transitions,
      Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin,
      Universidade Estadual de Campinas, May 20, 2014, Campinas, Brasil.
    7. Topology changing brane-black hole phase transitions,
      Departamento de Física Teórica, Instituto de Física Armando Dias Tavares,
      Universidade do Estado do Rio de Janeiro, May 16, 2014, Rio de Janeiro, Brasil.
    8. Thick branes, black holes and phase transitions,
      Departament de Física, Universitat de les Illes Balears, May 7, 2014, Palma de Mallorca, Spain.
    9. Thick Dirac-Nambu-Goto branes on black hole backgrounds,
      College of Science and Technology, Nihon University, March 24, 2014, Funabashi, Japan.
    10. Thickness corrections in topology changing brane - black hole systems,
      Department of Physics, University of Aveiro, March 12, 2014, Aveiro, Portugal.
    11. Thermodynamics of Schwarzschild black holes from the Rényi entropy formula,
      VI Black Hole Workshop, December 19-20, 2013, Braga, Portugal.
    12. What are black holes and branes good for?
      Columbia University, Department of Astronomy, November 7, 2013, New York, USA.
    13. Topology changing Dirac-Nambu-Goto branes on higher dimensional black hole backgrounds,
      Instituto Superior Técnico, Multidisciplinary Center for Astrophysics, October 3, 2013, Lisbon, Portugal.
    14. Beyond the Dirac-Nambu-Goto approximation in brane - black hole systems,
      University of Minho, Department of Mathematics, April 16, 2013, Braga, Portugal.
    15. Thickness corrections to Dirac-Nambu-Goto branes on black hole backgrounds,
      Spanish Relativity Meeting in Portugal 2012 (ERE2012), September 3-7, 2012, Guimarães, Portugal.
    16. Topology changing thick-brane solutions on black hole backgrounds,
      University of Cape Town, Department of Mathematics and Applied Mathematics, July 27, 2010, Cape Town, South Africa.
    17. Thick branes on black hole backgrounds,
      Chinese Academy of Sciences, Institute of High Energy Physics, March 5, 2009, Beijing, China.
    18. Branes, black holes and phase transitions,
      University of Minho, Department of Mathematics, October 15, 2008, Braga, Portugal.
    19. Curvature corrections in brane - black hole dynamics,
      University of Udine, Department of Mathematics and Informatics, October 10, 2008, Udine, Italy.
    20. Thickness perturbations in brane - black hole systems,
      Queen Mary, University of London, School of Mathematical Sciences, October 8, 2008 London, UK.
    21. Topological phase transitions in brane - black hole systems,
      University of Otago, Department of Mathematics and Statistics, March 26, 2008, Dunedin, New Zealand.
    22. Linear perturbations of a dust filled universe with cosmological constant,
      Kyoto University, Yukawa Institute for Theoretical Physics, January 30, 2007, Kyoto, Japan.
    23. Linear perturbations of the late universe in the presence of cosmological constant,
      University of Tübingen, Department of Theoretical Astrophysics, September 14, 2005, Tübingen, Germany.
    24. A késői univerzum lineáris perturbációi kozmológiai állandó jelenlétében,
      KFKI RMKI, Department of Theoretical Physics, June 10, 2005, Budapest, Hungary.
    25. The structure formation may cause the accelerating expansion of the universe,
      Joint European and National Astronomical Meeting for 2003 (JENAM), August 25-30, 2003, Budapest, Hungary.
    26. Accelerating expansion of the universe due to density fluctuations,
      7th Hungarian Relativity Workshop, August 10-15, 2003, Sárospatak, Hungary.
    27. FRW perturbations with a cosmological constant,
      University of Aberdeen, Department of Mathematical Sciences, November 15, 2002, Aberdeen, Scotland, UK.

    Posters: 7

    1. An alternative approach to black hole thermodynamics: Rényi entropy and phase transition,
      Viktor G. Czinner and Hideo Iguchi,
      The 25th Workshop on General Relativity and Gravitation in Japan (JGRG25), Dec. 7 - Dec. 11, 2015,
      Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan.
    2. Black Hole Thermodynamics Based on Non-extensive Thermodynamic Functions,
      Viktor G. Czinner and Hideo Iguchi,
      Testing Gravity 2015, Jan. 15-17, 2015, Vancouver, Canada.
    3. Thick Black Branes,
      Viktor G. Czinner and Antonino Flachi,
      The 19th Workshop on General Relativity and Gravitation in Japan (JGRG19), Nov. 30 - Dec. 4, 2009, Rikkyo University, Tokyo, Japan.
    4. Rotational Sachs-Wolfe effect in FRW cosmologies,
      Viktor G. Czinner and Mátyás Vasúth,
      18th International Conference on General Relativity and Gravitation (GRG18th), July 8-13, 2007, Sydney, Australia.
    5. Rotational perturbations in FRW models,
      Viktor G. Czinner and Mátyás Vasúth,
      Outstanding Questions for the Standard Cosmological Model, March 26-29, 2007, Imperial College, London, UK.
    6. FRW perturbations in the presence of a cosmological constant,
      Z. Perjés, M. Vasúth, V. Czinner and D. Eriksson,
      17th International Conference on General Relativity and Gravitation (GRG17th), July 18-25, 2004, Dublin, Ireland.
    7. Structure formation may cause the accelerating expansion of the universe,
      Gy. Bene, V. Czinner and M. Vasúth,
      319th WE-Heraeus-Seminar, March 1-5, 2004, Bad Honnef, Germany.

free 
counter